题名 | Design of Compressive Imaging Masks for Human Activity Perception Based on Binary Convolutional Neural Network |
作者 | |
通讯作者 | Hao, Qi |
DOI | |
发表日期 | 2017
|
ISBN | 978-1-5090-6065-8
|
会议录名称 | |
卷号 | 2017-November
|
页码 | 260-265
|
会议日期 | 16-18 Nov. 2017
|
会议地点 | 10 Exco-ro, Buk-gu, Daegu, Korea, Republic of
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Many applications demand proper design and implementation of 0-1 binary compressive sensing (CS) measurement matrices. This paper presents a construction method for such binary CS measurement matrices by training a convolutional neural network (CNN) with 0-1 weights. The desired CS performance of resultant binary measurement matrices can be achieved by designing a proper CNN training procedure. For human activity recognition applications, such a sensing system is implemented with a small number of optical sensors and optical masks, which can achieve a high recognition capability with a far smaller amount of data than traditional cameras. In the experiments, the compressive sensory readings are classified using a basic K-Nearest Neighbor (KNN) algorithm to demonstrate the high sampling efficiency of hardware without compromising much the recognition performance. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | China Postdoctoral Science Foundation[2017M612659]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000426937700040
|
EI入藏号 | 20180904837539
|
EI主题词 | Compressed sensing
; Convolution
; Intelligent systems
; Nearest neighbor search
; Neural networks
|
EI分类号 | Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Algebra:921.1
; Optimization Techniques:921.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8170438 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24796 |
专题 | 工学院_计算机科学与工程系 前沿与交叉科学研究院 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China 2.South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ma, Rui,Liu, Guocheng,Hao, Qi,et al. Design of Compressive Imaging Masks for Human Activity Perception Based on Binary Convolutional Neural Network[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:260-265.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论