题名 | Performance Comparison of EMO Algorithms on Test Problems with Different Search Space Shape |
作者 | |
通讯作者 | Tanigaki, Yuki |
DOI | |
发表日期 | 2017
|
ISSN | 2377-6870
|
ISBN | 978-1-5090-4918-9
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 27-30 June 2017
|
会议地点 | 1-1-20, Nionohama, Otsu, Japan
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | We examine the performance of evolutionary multi-objective optimization (EMO) algorithms on various shapes of the search space in the objective space (i.e., the feasible region in the objective space). To analyze the advantage and disadvantage of each EMO algorithm on the shape of the search space, we propose a meta-optimization method which can automatically create multi-objective optimization problems (MOPs) for clarifying the advantage and disadvantage of EMO algorithms. In particular, we propose a two-level model to generate such MOPs. In the upper level, MOPs are handled as solutions. Some design variables of each MOP are optimized in this level. In the lower level, each MOP is used to calculate the relative performance between two EMO algorithms. The relative performance is regarded as the fitness of the MOP in the upper level. Thus, by maximizing the relative performance, we can obtain an MOP which differentiates the search performance between two EMO algorithms. Through computational experiments, we obtained two interesting observations. One is that Pareto dominance-based EMO algorithms have a low escaping ability from local Pareto-optimal regions. The other is that it is difficult for decomposition-and indicator-based EMO algorithms to find solutions along the entire Pareto front. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000427063700096
|
EI入藏号 | 20174104266037
|
EI主题词 | Fuzzy systems
; Intelligent computing
; Intelligent systems
; Multiobjective optimization
; Pareto principle
; Pinch effect
; Soft computing
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Optimization Techniques:921.5
; Systems Science:961
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8023314 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24813 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Sakai, Osaka 5998531, Japan 2.Southern Univ Sci & Technol SUSTech, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 |
Tanigaki, Yuki,Nojima, Yusuke,Ishibuchi, Hisao. Performance Comparison of EMO Algorithms on Test Problems with Different Search Space Shape[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论