中文版 | English
题名

Range Loss for Deep Face Recognition with Long-Tailed Training Data

作者
通讯作者Qiao, Yu
DOI
发表日期
2017
ISSN
1550-5499
ISBN
978-1-5386-1033-6
会议录名称
卷号
2017-October
页码
5419-5428
会议日期
22-29 Oct. 2017
会议地点
Venice, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Deep convolutional neural networks have achieved significant improvements on face recognition task due to their ability to learn highly discriminative features from tremendous amounts of face images. Many large scale face datasets exhibit long-tail distribution where a small number of entities (persons) have large number of face images while a large number of persons only have very few face samples (long tail). Most of the existing works alleviate this problem by simply cutting the tailed data and only keep identities with enough number of examples. Unlike these work, this paper investigated how long-tailed data impact the training of face CNNs and develop a novel loss function, called range loss, to effectively utilize the tailed data in training process. More specifically, range loss is designed to reduce overall intrapersonal variations while enlarge interpersonal differences simultaneously. Extensive experiments on two face recognition benchmarks, Labeled Faces in the Wild (LFW) [11] and YouTube Faces (YTF) [33], demonstrate the effectiveness of the proposed range loss in overcoming the long tail effect, and show the good generalization ability of the proposed methods.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
External Cooperation Program of BIC Chinese Academy of Sciences[172644KYSB20160033]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000425498405053
EI入藏号
20180704803880
EI主题词
Computer vision ; Deep neural networks ; Image enhancement ; Neural networks
EI分类号
Computer Applications:723.5
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237840
引用统计
被引频次[WOS]:242
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24828
专题南方科技大学
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Comp Vis & Vitrual Real Te, Beijing, Peoples R China
2.Tianjin Univ, Tianjin, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen, Peoples R China
4.Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
5.Tencent AI Lab, Shenzhen, Peoples R China
6.Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Xiao,Fang, Zhiyuan,Wen, Yandong,et al. Range Loss for Deep Face Recognition with Long-Tailed Training Data[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:5419-5428.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiao]的文章
[Fang, Zhiyuan]的文章
[Wen, Yandong]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiao]的文章
[Fang, Zhiyuan]的文章
[Wen, Yandong]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiao]的文章
[Fang, Zhiyuan]的文章
[Wen, Yandong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。