题名 | Accelerated Multi-Objective Design Optimization of Antennas By Surrogate Modeling and Domain Segmentation |
作者 | |
通讯作者 | Koziel, Slawomir |
DOI | |
发表日期 | 2017
|
ISSN | 2164-3342
|
ISBN | 978-1-5090-3742-1
|
会议录名称 | |
页码 | 3254-3258
|
会议日期 | 19-24 March 2017
|
会议地点 | Paris, France
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Multi-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of antennas is proposed that exploits fast data-driven surrogates constructed at the level of coarse-discretization EM simulations, multi-objective evolutionary algorithm to yield an initial approximation of the Pareto set, and response correction methods for design refinement (i.e., elevating the selected Pareto-optimal designs to the high-fidelity EM simulation model level). To reduce the computational cost of setting up the surrogate, the relevant part of the design space (i.e., the part containing the Pareto front) is first identified through a series of single-objective optimization runs and subsequently represented by a set of adjacent compartments with separate surrogate models established within them. This segmentation process dramatically reduces the number of training samples necessary to build an accurate model thus limiting the overall optimization cost. Our approach is demonstrated using a UWB monopole antenna and compared to a state-of-the-art surrogate-assisted technique that does not use domain segmentation. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61471258]
|
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000403827303017
|
EI入藏号 | 20172303737806
|
EI主题词 | Approximation algorithms
; Cost reduction
; Design
; Economic and social effects
; Evolutionary algorithms
; Fuel additives
; Monopole antennas
; Pareto principle
; Ultra-wideband (UWB)
|
EI分类号 | Telecommunication; Radar, Radio and Television:716
; Radio Systems and Equipment:716.3
; Chemical Agents and Basic Industrial Chemicals:803
; Mathematics:921
; Optimization Techniques:921.5
; Social Sciences:971
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7928129 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24840 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Reykjavik Univ, Engn Optimizat & Modeling Ctr, IS-101 Reykjavik, Iceland 2.Gdansk Univ Technol, Fac Elect Telecommun & Informat, PL-80233 Gdansk, Poland 3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 4.Univ Regina, Dept Elect Syst Engn, Regina, SK, Canada |
推荐引用方式 GB/T 7714 |
Koziel, Slawomir,Bekasiewicz, Adrian,Cheng, Qingsha S.,et al. Accelerated Multi-Objective Design Optimization of Antennas By Surrogate Modeling and Domain Segmentation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:3254-3258.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论