中文版 | English
题名

Accelerated Multi-Objective Design Optimization of Antennas By Surrogate Modeling and Domain Segmentation

作者
通讯作者Koziel, Slawomir
DOI
发表日期
2017
ISSN
2164-3342
ISBN
978-1-5090-3742-1
会议录名称
页码
3254-3258
会议日期
19-24 March 2017
会议地点
Paris, France
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Multi-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of antennas is proposed that exploits fast data-driven surrogates constructed at the level of coarse-discretization EM simulations, multi-objective evolutionary algorithm to yield an initial approximation of the Pareto set, and response correction methods for design refinement (i.e., elevating the selected Pareto-optimal designs to the high-fidelity EM simulation model level). To reduce the computational cost of setting up the surrogate, the relevant part of the design space (i.e., the part containing the Pareto front) is first identified through a series of single-objective optimization runs and subsequently represented by a set of adjacent compartments with separate surrogate models established within them. This segmentation process dramatically reduces the number of training samples necessary to build an accurate model thus limiting the overall optimization cost. Our approach is demonstrated using a UWB monopole antenna and compared to a state-of-the-art surrogate-assisted technique that does not use domain segmentation.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61471258]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000403827303017
EI入藏号
20172303737806
EI主题词
Approximation algorithms ; Cost reduction ; Design ; Economic and social effects ; Evolutionary algorithms ; Fuel additives ; Monopole antennas ; Pareto principle ; Ultra-wideband (UWB)
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Radio Systems and Equipment:716.3 ; Chemical Agents and Basic Industrial Chemicals:803 ; Mathematics:921 ; Optimization Techniques:921.5 ; Social Sciences:971
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7928129
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24840
专题工学院_电子与电气工程系
作者单位
1.Reykjavik Univ, Engn Optimizat & Modeling Ctr, IS-101 Reykjavik, Iceland
2.Gdansk Univ Technol, Fac Elect Telecommun & Informat, PL-80233 Gdansk, Poland
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
4.Univ Regina, Dept Elect Syst Engn, Regina, SK, Canada
推荐引用方式
GB/T 7714
Koziel, Slawomir,Bekasiewicz, Adrian,Cheng, Qingsha S.,et al. Accelerated Multi-Objective Design Optimization of Antennas By Surrogate Modeling and Domain Segmentation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:3254-3258.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Koziel, Slawomir]的文章
[Bekasiewicz, Adrian]的文章
[Cheng, Qingsha S.]的文章
百度学术
百度学术中相似的文章
[Koziel, Slawomir]的文章
[Bekasiewicz, Adrian]的文章
[Cheng, Qingsha S.]的文章
必应学术
必应学术中相似的文章
[Koziel, Slawomir]的文章
[Bekasiewicz, Adrian]的文章
[Cheng, Qingsha S.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。