中文版 | English
题名

Link Prediction in Schema-Rich Heterogeneous Information Network

作者
通讯作者Shi, Chuan
DOI
发表日期
2016
ISSN
16113349
EISSN
1611-3349
会议录名称
卷号
9651
页码
449-460
会议地点
Auckland, New zealand
出版地
HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
出版者
摘要
Recent years have witnessed the boom of heterogeneous information network (HIN), which contains different types of nodes and relations. Many data mining tasks have been explored in this kind of network. Among them, link prediction is an important task to predict the potential links among nodes, which are required in many applications. The contemporary link prediction usually are based on simple HIN whose schema are bipartite or star-schema. In these HINs, the meta paths are predefined or can be enumerated. However, in many real networked data, it is hard to describe their network structure with simple schema. For example, the knowledge base with RDF format include tens of thousands types of objects and links. On this kind of schema-rich HIN, it is impossible to enumerate meta paths. In this paper, we study the link prediction in schema-rich HIN and propose a novel Link Prediction with automatic meta Paths method (LiPaP). The LiPaP designs an algorithm called Automatic Meta Path Generation (AMPG) to automatically extract meta paths from schema-rich HIN and a supervised method with likelihood function to learn weights of the extracted meta paths. Experiments on real knowledge database, Yago, validate that LiPaP is an effective, steady and efficient method.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
[2013CB329606] ; [JCYJ20140509143748226] ; National Natural Science Foundation of China[71231002] ; National Natural Science Foundation of China[61375058,11571161]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:000389019500036
EI入藏号
20161702311808
EI主题词
Data mining ; Forecasting ; Information services ; Knowledge based systems
EI分类号
Data Processing and Image Processing:723.2 ; Expert Systems:723.4.1 ; Information Services:903.4
来源库
Web of Science
引用统计
被引频次[WOS]:15
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24870
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Beijing Univ Posts & Telecommun, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Cao, Xiaohuan,Zheng, Yuyan,Shi, Chuan,et al. Link Prediction in Schema-Rich Heterogeneous Information Network[C]. HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY:SPRINGER-VERLAG BERLIN,2016:449-460.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao, Xiaohuan]的文章
[Zheng, Yuyan]的文章
[Shi, Chuan]的文章
百度学术
百度学术中相似的文章
[Cao, Xiaohuan]的文章
[Zheng, Yuyan]的文章
[Shi, Chuan]的文章
必应学术
必应学术中相似的文章
[Cao, Xiaohuan]的文章
[Zheng, Yuyan]的文章
[Shi, Chuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。