题名 | Convolution Neutral Network Enhanced Binary Sensor Network for Human Activity Recognition |
作者 | |
通讯作者 | Hao, Qi |
DOI | |
发表日期 | 2016
|
ISSN | 21689229
|
ISBN | 978-1-4799-8288-2
|
会议录名称 | |
卷号 | 0
|
页码 | 1-3
|
会议日期 | 30 Oct.-3 Nov. 2016
|
会议地点 | Orlando, FL, United states
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | This paper presents binary sensor network for human activity recognition, specifically, whose performance is enhanced by using convolution neutral networks (CNNs). The goal of this research is to develop a sensing system based on CNNs that can recognize various human daily activities with minimum data acquisition. The whole system consists of pyroelectric infrared (PIR) sensor arrays, feature extractor, and a classifier. All the sensory data are converted into binary numbers to preserve the geometry and motion information of targets. In this work, we compare the feature selection and classification methods of CNNs, which can extract feature automatically, with another method. The experiment results have demonstrated that the proposed system can recognize human activity recognition only with a few bits of sensory data. Besides, the CNNs can achieve the best recognition performance despite their high computational complexity. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Southern University of Science and Technology University Research Committee[FRG-SUSTC1501A-29]
|
WOS研究方向 | Engineering
; Remote Sensing
|
WOS类目 | Engineering, Electrical & Electronic
; Remote Sensing
|
WOS记录号 | WOS:000399395700112
|
EI入藏号 | 20170503313428
|
EI主题词 | Convolution
; Data acquisition
; Pattern recognition
; Sensor networks
|
EI分类号 | Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7808519 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24887 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Liu, Guocheng,Liang, Jinhao,Lan, Gongjin,et al. Convolution Neutral Network Enhanced Binary Sensor Network for Human Activity Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2016:1-3.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论