题名 | A Behavior Mining Based Hybrid Recommender System |
作者 | |
通讯作者 | Fang, Zhiyuan |
DOI | |
发表日期 | 2016
|
会议录名称 | |
页码 | 1-5
|
会议地点 | Hangzhou, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Recommender systems are mostly well known for their applications in e-commerce sites and are mostly static models. Classical personalized recommender algorithm include collaborative filtering method applied in Amazon, matrix factorization algorithm from Netflix,etc. In this article, we hope to combine traditional model with behavior pattern extraction method. We use desensitized mobile transaction record provided by T-mall, Alibaba to build a hybrid dynamic recommender system. The sequential pattern mining aims to find frequent sequential pattern in sequence database and is applied in this hybrid model to predict customers' payment behavior thus contributing to the accuracy of the model. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Information Systems
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000390299100001
|
EI入藏号 | 20163302717733
|
EI主题词 | Big data
; Collaborative filtering
; Data handling
; Electronic commerce
; Factorization
|
EI分类号 | Data Processing and Image Processing:723.2
; Computer Applications:723.5
; Information Sources and Analysis:903.1
; Mathematics:921
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24890 |
专题 | 工学院_电子与电气工程系 |
作者单位 | South Univ Sci & Technol China, Dept Elect & Elect Engn, Shenzhen, Peoples R China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Fang, Zhiyuan,Zhang, Lingqi,Chen, Kun. A Behavior Mining Based Hybrid Recommender System[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2016:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论