中文版 | English
题名

Robust sufficient dimension reduction via ball covariance

作者
通讯作者Chen, Xin
发表日期
2019-12
DOI
发表期刊
ISSN
0167-9473
EISSN
1872-7352
卷号140页码:144-154
摘要

Sufficient dimension reduction is an important branch of dimension reduction, which includes variable selection and projection methods. Most of the sufficient dimension reduction methods are sensitive to outliers and heavy-tailed predictors, and require strict restrictions on the predictors and the response. In order to widen the applicability of sufficient dimension reduction, we propose BCov-SDR, a novel sufficient dimension reduction approach that is based on a recently developed dependence measure: ball covariance. Compared with other popular sufficient dimension reduction methods, our approach requires rather mild conditions on the predictors and the response, and is robust to outliers or heavy-tailed distributions. BCov-SDR does not require the specification of a forward regression model and allows for discrete or categorical predictors and multivariate response. The consistency of the BCov-SDR estimator of the central subspace is obtained without imposing any moment conditions on the predictors. Simulations and real data studies illustrate the applicability and versatility of our proposed method. (C) 2019 Elsevier B.V. All rights reserved.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
China Scholarship Council[[2017]3109] ; China Scholarship Council[201706980021]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号
WOS:000478704800009
出版者
EI入藏号
20192707141681
EI主题词
Regression analysis ; Robustness (control systems)
EI分类号
Control Systems:731.1 ; Mathematical Statistics:922.2
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25068
专题理学院_统计与数据科学系
作者单位
1.Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Zhang, Jia,Chen, Xin. Robust sufficient dimension reduction via ball covariance[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2019,140:144-154.
APA
Zhang, Jia,&Chen, Xin.(2019).Robust sufficient dimension reduction via ball covariance.COMPUTATIONAL STATISTICS & DATA ANALYSIS,140,144-154.
MLA
Zhang, Jia,et al."Robust sufficient dimension reduction via ball covariance".COMPUTATIONAL STATISTICS & DATA ANALYSIS 140(2019):144-154.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zhang-2019-Robust su(463KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jia]的文章
[Chen, Xin]的文章
百度学术
百度学术中相似的文章
[Zhang, Jia]的文章
[Chen, Xin]的文章
必应学术
必应学术中相似的文章
[Zhang, Jia]的文章
[Chen, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。