题名 | Robust sufficient dimension reduction via ball covariance |
作者 | |
通讯作者 | Chen, Xin |
发表日期 | 2019-12
|
DOI | |
发表期刊 | |
ISSN | 0167-9473
|
EISSN | 1872-7352
|
卷号 | 140页码:144-154 |
摘要 | Sufficient dimension reduction is an important branch of dimension reduction, which includes variable selection and projection methods. Most of the sufficient dimension reduction methods are sensitive to outliers and heavy-tailed predictors, and require strict restrictions on the predictors and the response. In order to widen the applicability of sufficient dimension reduction, we propose BCov-SDR, a novel sufficient dimension reduction approach that is based on a recently developed dependence measure: ball covariance. Compared with other popular sufficient dimension reduction methods, our approach requires rather mild conditions on the predictors and the response, and is robust to outliers or heavy-tailed distributions. BCov-SDR does not require the specification of a forward regression model and allows for discrete or categorical predictors and multivariate response. The consistency of the BCov-SDR estimator of the central subspace is obtained without imposing any moment conditions on the predictors. Simulations and real data studies illustrate the applicability and versatility of our proposed method. (C) 2019 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | China Scholarship Council[[2017]3109]
; China Scholarship Council[201706980021]
|
WOS研究方向 | Computer Science
; Mathematics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Statistics & Probability
|
WOS记录号 | WOS:000478704800009
|
出版者 | |
EI入藏号 | 20192707141681
|
EI主题词 | Regression analysis
; Robustness (control systems)
|
EI分类号 | Control Systems:731.1
; Mathematical Statistics:922.2
|
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25068 |
专题 | 理学院_统计与数据科学系 |
作者单位 | 1.Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China 2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China |
通讯作者单位 | 统计与数据科学系 |
推荐引用方式 GB/T 7714 |
Zhang, Jia,Chen, Xin. Robust sufficient dimension reduction via ball covariance[J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS,2019,140:144-154.
|
APA |
Zhang, Jia,&Chen, Xin.(2019).Robust sufficient dimension reduction via ball covariance.COMPUTATIONAL STATISTICS & DATA ANALYSIS,140,144-154.
|
MLA |
Zhang, Jia,et al."Robust sufficient dimension reduction via ball covariance".COMPUTATIONAL STATISTICS & DATA ANALYSIS 140(2019):144-154.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Zhang-2019-Robust su(463KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论