题名 | Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries |
作者 | |
通讯作者 | Tang, Chunmei; Cheng, Chun |
发表日期 | 2019-10-15
|
DOI | |
发表期刊 | |
ISSN | 0169-4332
|
EISSN | 1873-5584
|
卷号 | 491页码:451-459 |
摘要 | Alloy Sb as an anode material for Li ion batteries (LIBs) suffers from severe volume expansion and structural breakdown during lithiation process, leading to a abrupt drop of battery cycle performance. The density functional theory is used to explore the adsorption and diffusion of Li atom in the two dimensional graphene/beta-antimonene (G/Sb) heterostructure. Our calculation results reveal that the G/Sb heterostructure possesses excellent thermodynamic and dynamic stability with the 0.06 eV band gap, which is much smaller than that of monolayer Sb (1.24 eV) and can insure fast electron transport in the electrode during lithiation/delithiation process. The calculated smaller Li diffusion energy barrier and volume expansion, together with the larger Li diffusion coefficient at 300 K explore greater charge/discharge performance for the G/Sb heterostructure than the corresponding parent bulk, monolayer, and bilayer materials. This is mainly because the monolayer beta-Sb within the G/Sb heterostructure can render larger strain compared with that of the pristine beta-Sb. We also evaluate the performance of the G/Sb heterostructure as the anode of LIBs by charge analysis and density of states. These results provide conclusive evidence to explore that the G/Sb heterostructure should be a promising candidate anode for flexible and wearable LIBs. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Guangdong-Hong Kong Joint Innovation Project[2016A050503012]
|
WOS研究方向 | Chemistry
; Materials Science
; Physics
|
WOS类目 | Chemistry, Physical
; Materials Science, Coatings & Films
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:000479082900051
|
出版者 | |
EI入藏号 | 20192607087378
|
EI主题词 | Anodes
; Charging (batteries)
; Density functional theory
; Diffusion
; Electron transport properties
; Energy gap
; Expansion
; Graphene
; Heterojunctions
; Ions
; Monolayers
|
EI分类号 | Secondary Batteries:702.1.2
; Electron Tubes:714.1
; Semiconductor Devices and Integrated Circuits:714.2
; Nanotechnology:761
; Chemical Products Generally:804
; Probability Theory:922.1
; Materials Science:951
|
ESI学科分类 | MATERIALS SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:32
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25100 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China 2.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Wisdom Garden Bldg 1,Room 308,Tangchang Rd, Shenzhen 518055, Guangdong, Peoples R China |
通讯作者单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Wang, Xiaoxu,Tang, Chunmei,Zhou, Xiaofeng,et al. Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries[J]. APPLIED SURFACE SCIENCE,2019,491:451-459.
|
APA |
Wang, Xiaoxu,Tang, Chunmei,Zhou, Xiaofeng,Zhu, Weihua,&Cheng, Chun.(2019).Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries.APPLIED SURFACE SCIENCE,491,451-459.
|
MLA |
Wang, Xiaoxu,et al."Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries".APPLIED SURFACE SCIENCE 491(2019):451-459.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Wang-2019-Theoretica(1901KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论