中文版 | English
题名

Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms

作者
通讯作者Zhou, Zhi-Hua
发表日期
2019-10
DOI
发表期刊
ISSN
0004-3702
EISSN
1872-7921
卷号275页码:279-294
摘要
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. During the past two decades, promising results on the running time analysis (one essential theoretical aspect) of EAs have been obtained, while most of them focused on isolated combinatorial optimization problems, which do not reflect the general-purpose nature of EAs. To provide a general theoretical explanation of the behavior of EAs, it is desirable to study their performance on general classes of combinatorial optimization problems. To the best of our knowledge, the only result towards this direction is the provably good approximation guarantees of EAs for the problem class of maximizing monotone submodular functions with matroid constraints. The aim of this work is to contribute to this line of research. Considering that many combinatorial optimization problems involve non-monotone or non-submodular objective functions, we study the general problem classes, maximizing submodular functions with/without a size constraint and maximizing monotone approximately submodular functions with a size constraint. We prove that a simple multi-objective EA called GSEMO-C can generally achieve good approximation guarantees in polynomial expected running time. (C) 2019 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2018YFB1004300]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000485208100011
出版者
EI入藏号
20192607112508
EI主题词
Combinatorial optimization ; Computational complexity ; Optimization ; Polynomial approximation
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:31
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25128
专题工学院_计算机科学与工程系
作者单位
1.Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Qian, Chao,Yu, Yang,Tang, Ke,et al. Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms[J]. ARTIFICIAL INTELLIGENCE,2019,275:279-294.
APA
Qian, Chao,Yu, Yang,Tang, Ke,Yao, Xin,&Zhou, Zhi-Hua.(2019).Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms.ARTIFICIAL INTELLIGENCE,275,279-294.
MLA
Qian, Chao,et al."Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms".ARTIFICIAL INTELLIGENCE 275(2019):279-294.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Qian-2019-Maximizing(533KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian, Chao]的文章
[Yu, Yang]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Qian, Chao]的文章
[Yu, Yang]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Qian, Chao]的文章
[Yu, Yang]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。