题名 | A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources |
作者 | |
通讯作者 | Dong, ZhaoMin |
发表日期 | 2019-10
|
DOI | |
发表期刊 | |
ISSN | 0269-7491
|
EISSN | 1873-6424
|
卷号 | 253页码:403-411 |
摘要 | An accurate estimation of population exposure to particulate matter with an aerodynamic diameter <2.5 mu m (PM2.5 ) is crucial to hazard assessment and epidemiology. This study integrated annual data from 1146 in-home air monitors, air quality monitoring network, public applications, and traffic smart cards to determine the pattern of PM2.5 concentrations and activities in different microenvironments (including outdoors, indoors, subways, buses, and cars). By combining massive amounts of signaling data from cell phones, this study applied a spatio-temporally weighted model to improve the estimation of PM2.5 exposure. Using Shanghai as a case study, the annual average indoor PM2.5 concentration was estimated to be 29.3 +/- 27.1 mu g/m(3) (n = 365), with an average infiltration factor of 0.63. The spatio-temporally weighted PM2.5 exposure was estimated to be 32.1 +/- 13.9 mu g/m(3) (n = 365), with indoor PM2.5 contributing the most (85.1%), followed by outdoor (7.6%), bus (3.7%), subway (3.1%), and car (0.5%). However, considering that outdoor PM2.5 makes a significant contribution to indoor PM2.5, outdoor PM2.5 was responsible for most of the exposure in Shanghai. A heatmap of PM2.5 exposure indicated that the inner-city exposure index was significantly higher than that of the outskirts city, which demonstrated that the importance of spatial differences in population exposure estimation. (C) 2019 Elsevier Ltd. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Beihang University[ZG216S1876]
; Beihang University[KG12058101]
; Beihang University[ZG226S18S3]
|
WOS研究方向 | Environmental Sciences & Ecology
|
WOS类目 | Environmental Sciences
|
WOS记录号 | WOS:000483406700043
|
出版者 | |
EI入藏号 | 20192907197760
|
EI主题词 | Air quality
; Big data
; Smart cards
; Subways
|
EI分类号 | Passenger Railroad Transportation:433.2
; Air Pollution Control:451.2
; Biomedical Engineering:461.1
; Digital Computers and Systems:722.4
; Data Processing and Image Processing:723.2
|
ESI学科分类 | ENVIRONMENT/ECOLOGY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25132 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China 2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China 3.Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China 4.Beihang Univ, Sch Space & Environm, Beijing, Peoples R China 5.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China 6.Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Hubei, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Ben, YuJie,Ma, FuJun,Wang, Hao,et al. A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources[J]. ENVIRONMENTAL POLLUTION,2019,253:403-411.
|
APA |
Ben, YuJie.,Ma, FuJun.,Wang, Hao.,Hassan, Muhammad Azher.,Yevheniia, Romanenko.,...&Dong, ZhaoMin.(2019).A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources.ENVIRONMENTAL POLLUTION,253,403-411.
|
MLA |
Ben, YuJie,et al."A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources".ENVIRONMENTAL POLLUTION 253(2019):403-411.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Ben-2019-A spatio-te(1052KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论