中文版 | English
题名

A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources

作者
通讯作者Dong, ZhaoMin
发表日期
2019-10
DOI
发表期刊
ISSN
0269-7491
EISSN
1873-6424
卷号253页码:403-411
摘要
An accurate estimation of population exposure to particulate matter with an aerodynamic diameter <2.5 mu m (PM2.5 ) is crucial to hazard assessment and epidemiology. This study integrated annual data from 1146 in-home air monitors, air quality monitoring network, public applications, and traffic smart cards to determine the pattern of PM2.5 concentrations and activities in different microenvironments (including outdoors, indoors, subways, buses, and cars). By combining massive amounts of signaling data from cell phones, this study applied a spatio-temporally weighted model to improve the estimation of PM2.5 exposure. Using Shanghai as a case study, the annual average indoor PM2.5 concentration was estimated to be 29.3 +/- 27.1 mu g/m(3) (n = 365), with an average infiltration factor of 0.63. The spatio-temporally weighted PM2.5 exposure was estimated to be 32.1 +/- 13.9 mu g/m(3) (n = 365), with indoor PM2.5 contributing the most (85.1%), followed by outdoor (7.6%), bus (3.7%), subway (3.1%), and car (0.5%). However, considering that outdoor PM2.5 makes a significant contribution to indoor PM2.5, outdoor PM2.5 was responsible for most of the exposure in Shanghai. A heatmap of PM2.5 exposure indicated that the inner-city exposure index was significantly higher than that of the outskirts city, which demonstrated that the importance of spatial differences in population exposure estimation. (C) 2019 Elsevier Ltd. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Beihang University[ZG216S1876] ; Beihang University[KG12058101] ; Beihang University[ZG226S18S3]
WOS研究方向
Environmental Sciences & Ecology
WOS类目
Environmental Sciences
WOS记录号
WOS:000483406700043
出版者
EI入藏号
20192907197760
EI主题词
Air quality ; Big data ; Smart cards ; Subways
EI分类号
Passenger Railroad Transportation:433.2 ; Air Pollution Control:451.2 ; Biomedical Engineering:461.1 ; Digital Computers and Systems:722.4 ; Data Processing and Image Processing:723.2
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25132
专题工学院_环境科学与工程学院
作者单位
1.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen 518055, Peoples R China
3.Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
4.Beihang Univ, Sch Space & Environm, Beijing, Peoples R China
5.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R China
6.Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Hubei, Peoples R China
第一作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Ben, YuJie,Ma, FuJun,Wang, Hao,et al. A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources[J]. ENVIRONMENTAL POLLUTION,2019,253:403-411.
APA
Ben, YuJie.,Ma, FuJun.,Wang, Hao.,Hassan, Muhammad Azher.,Yevheniia, Romanenko.,...&Dong, ZhaoMin.(2019).A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources.ENVIRONMENTAL POLLUTION,253,403-411.
MLA
Ben, YuJie,et al."A spatio-temporally weighted hybrid model to improve estimates of personal PM2.5 exposure: Incorporating big data from multiple data sources".ENVIRONMENTAL POLLUTION 253(2019):403-411.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Ben-2019-A spatio-te(1052KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ben, YuJie]的文章
[Ma, FuJun]的文章
[Wang, Hao]的文章
百度学术
百度学术中相似的文章
[Ben, YuJie]的文章
[Ma, FuJun]的文章
[Wang, Hao]的文章
必应学术
必应学术中相似的文章
[Ben, YuJie]的文章
[Ma, FuJun]的文章
[Wang, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。