题名 | Rationalizing the interphase stability of Li|doped-Li(7)La(3)Zr(2)O(12)via automated reaction screening and machine learning |
作者 | |
通讯作者 | Yang, Jiong; Yang, Jihui; Zhang, Wenqing |
发表日期 | 2019-09-14
|
DOI | |
发表期刊 | |
ISSN | 2050-7488
|
EISSN | 2050-7496
|
卷号 | 7期号:34页码:19961-19969 |
摘要 | Lithium metal batteries are a promising candidate for future high-energy-density energy storage. However, dendrite growth and the high reactivity of the Li metal anode result in low cycling efficiency and severe safety concerns. Here, we present a strategy to stabilize the lithium metal anode through cation doping in Li7La3Zr2O12 (LLZOM, M = dopant). High-throughput automated reaction screening together with a machine learning approach are developed to evaluate possible reactions and the thermodynamic stability of the Li|LLZOM interfaces under various chemical conditions. It is discovered that some dopants, such as M = Sc3+ (doping on Zr site), Ce3+ (La or Zr), Ac3+ (La), Y3+ (La or Zr), Tm3+ (La or Zr), Er3+ (La or Zr), Ho3+ (La or Zr), Dy3+ (La or Zr), Nd3+ (La or Zr), Tb3+ (La or Zr), Pr3+ (La), Pm3+ (La or Zr), Sm3+ (La or Zr), Gd3+ (La or Zr), Lu3+ (La), Ce4+ (Zr), Th4+ (Zr), and Pa5+ (Zr), exhibit thermodynamic stability against Li; while others, M = Ca2+ (La or Zr), Yb3+ (La), Br3+ (Li), Te4+ (Zr), Se4+ (Zr), S4+ (Zr), Hf4+ (Zr), Cl5+ (Zr), and I5+ (Zr), may lead to the spontaneous formation of a stable, passivating solid electrolyte interphase (SEI) layer on the Li metal, and alleviate dendritic lithium growth. From the machine learning approach, the formation energy of oxides MxOy emerges as the most crucial feature dominating the route of interface reactions, implying that the M-O bond strength governs the interface stability of the cation-doped LLZOM. The machine learning model then predicts 18 unexplored LLZOM systems, which are all validated in subsequent calculations. Our work offers practical insights for experimentalists into the selection of appropriate dopants in LLZO to stabilize Li metal anodes in solid-state batteries. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Guangdong Innovation Team Project[2017ZT07C062]
|
WOS研究方向 | Chemistry
; Energy & Fuels
; Materials Science
|
WOS类目 | Chemistry, Physical
; Energy & Fuels
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000483565400035
|
出版者 | |
EI入藏号 | 20193607405803
|
EI主题词 | Anodes
; Chemical Stability
; Lanthanum Compounds
; Lithium
; Lithium Batteries
; Lithium Compounds
; Machine Learning
; Positive Ions
; Solid Electrolytes
; Solid State Devices
; Solid-state Batteries
; Thermodynamic Stability
|
EI分类号 | Lithium And Alloys:542.4
; Thermodynamics:641.1
; Primary Batteries:702.1.1
; Electron Tubes:714.1
; Semiconductor Devices And Integrated Circuits:714.2
; Chemistry:801
; Chemical Agents And Basic Industrial Chemicals:803
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:66
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25182 |
专题 | 理学院_物理系 量子科学与工程研究院 |
作者单位 | 1.Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China 4.Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA |
第一作者单位 | 物理系; 量子科学与工程研究院 |
通讯作者单位 | 物理系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Liu, Bo,Yang, Jiong,Yang, Hongliang,et al. Rationalizing the interphase stability of Li|doped-Li(7)La(3)Zr(2)O(12)via automated reaction screening and machine learning[J]. Journal of Materials Chemistry A,2019,7(34):19961-19969.
|
APA |
Liu, Bo.,Yang, Jiong.,Yang, Hongliang.,Ye, Caichao.,Mao, Yuanqing.,...&Zhang, Wenqing.(2019).Rationalizing the interphase stability of Li|doped-Li(7)La(3)Zr(2)O(12)via automated reaction screening and machine learning.Journal of Materials Chemistry A,7(34),19961-19969.
|
MLA |
Liu, Bo,et al."Rationalizing the interphase stability of Li|doped-Li(7)La(3)Zr(2)O(12)via automated reaction screening and machine learning".Journal of Materials Chemistry A 7.34(2019):19961-19969.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
23.ML-JMCA_c9ta06748(949KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论