中文版 | English
题名

Automated retinal lesion detection via image saliency analysis

作者
通讯作者Zhao, Yitian
发表日期
2019-08-31
DOI
发表期刊
ISSN
0094-2405
EISSN
2473-4209
卷号46期号:10页码:4531-4544
摘要

Background and objective The detection of abnormalities such as lesions or leakage from retinal images is an important health informatics task for automated early diagnosis of diabetic and malarial retinopathy or other eye diseases, in order to prevent blindness and common systematic conditions. In this work, we propose a novel retinal lesion detection method by adapting the concepts of saliency. Methods Retinal images are first segmented as superpixels, two new saliency feature representations: uniqueness and compactness, are then derived to represent the superpixels. The pixel level saliency is then estimated from these superpixel saliency values via a bilateral filter. These extracted saliency features form a matrix for low-rank analysis to achieve saliency detection. The precise contour of a lesion is finally extracted from the generated saliency map after removing confounding structures such as blood vessels, the optic disk, and the fovea. The main novelty of this method is that it is an effective tool for detecting different abnormalities at the pixel level from different modalities of retinal images, without the need to tune parameters. Results To evaluate its effectiveness, we have applied our method to seven public datasets of diabetic and malarial retinopathy with four different types of lesions: exudate, hemorrhage, microaneurysms, and leakage. The evaluation was undertaken at the pixel level, lesion level, or image level according to ground truth availability in these datasets. Conclusions The experimental results show that the proposed method outperforms existing state-of-the-art ones in applicability, effectiveness, and accuracy.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Ningbo Natural Science Foundation[2018A610055]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000484283700001
出版者
EI入藏号
20204009284050
EI主题词
Feature extraction ; Blood vessels ; Structure (composition) ; Superpixels ; Diagnosis ; Eye protection
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Medicine and Pharmacology:461.6 ; Accidents and Accident Prevention:914.1 ; Materials Science:951
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25276
专题工学院_计算机科学与工程系
作者单位
1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Cixi Inst Biomed Engn, Cixi 315399, Peoples R China
3.Univ Liverpool, Dept Eye & Vis Sci, Liverpool L7 8TX, Merseyside, England
4.Edge Hill Univ, Dept Comp Sci, Ormskirk L39 4QP, England
5.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
6.Univ Leeds, Sch Comp, Leeds S2 9JT, W Yorkshire, England
7.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Yan, Qifeng,Zhao, Yitian,Zheng, Yalin,et al. Automated retinal lesion detection via image saliency analysis[J]. MEDICAL PHYSICS,2019,46(10):4531-4544.
APA
Yan, Qifeng.,Zhao, Yitian.,Zheng, Yalin.,Liu, Yonghuai.,Zhou, Kang.,...&Liu, Jiang.(2019).Automated retinal lesion detection via image saliency analysis.MEDICAL PHYSICS,46(10),4531-4544.
MLA
Yan, Qifeng,et al."Automated retinal lesion detection via image saliency analysis".MEDICAL PHYSICS 46.10(2019):4531-4544.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Automated Retinal Le(7690KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yan, Qifeng]的文章
[Zhao, Yitian]的文章
[Zheng, Yalin]的文章
百度学术
百度学术中相似的文章
[Yan, Qifeng]的文章
[Zhao, Yitian]的文章
[Zheng, Yalin]的文章
必应学术
必应学术中相似的文章
[Yan, Qifeng]的文章
[Zhao, Yitian]的文章
[Zheng, Yalin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。