中文版 | English
题名

IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques

作者
通讯作者Wang, Hao
发表日期
2019-08-15
DOI
发表期刊
ISSN
1046-2023
EISSN
1095-9130
卷号166页码:57-65
摘要
Inverse Virtual Screening is a powerful technique in the early stage of drug discovery process. This technique can provide important clues for biologically active molecules, which is useful in the following researches of durg discovery. In this work, combining with Word2vec, a natural language processing technique, dense fully connected neural network (DFCNN) algorithm is utilized to build up a prediction model. This model is able to perform a binary classification. Based on the query molecule, the input protein candidates can be classified into two subsets. One set is that potential targets with high possibilities to bind with the query molecule and the other one is that the proteins with low possibilities to bind with the query molecule. This model is named as IVS2vec. IVS2vec also can output a score reflecting binding possibility of the association between a protein and a molecule, which is useful to improve efficiency of research. We applied IVS2vec on several databases related to drug development and shown that our model can detect possible therapeutic targets. In addition, our model can identify targets related to adverse drug reactions which is useful to improve medication safety and repurpose drugs. Moreover, IVS2vec can give a very fast speed to perform prediction jobs. It is suitable for processing a large number of compounds in the chemical databases. We also find that IVS2vec has potential capabilities and outperform other state-of-the-art docking tools such as Autodock vina. In this study, IVS2vec brings many convincing results than Autodock vina in the reverse target searching case of Quercetin.
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Shenzhen Science and Technology Innovation Commission Project[JCYJ20180302174235893]
WOS研究方向
Biochemistry & Molecular Biology
WOS类目
Biochemical Research Methods ; Biochemistry & Molecular Biology
WOS记录号
WOS:000483008800007
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:31
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25327
专题生命科学学院_生物系
作者单位
1.Southern Univ Sci & Technol, Dept Biol, 1088 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Joint Engn Res Ctr Hlth Big Data Intelligent Anal, Shenzhen 518055, Guangdong, Peoples R China
3.Zhejiang Univ, Coll Software Technol, Hangzhou 315048, Zhejiang, Peoples R China
通讯作者单位生物系
推荐引用方式
GB/T 7714
Zhang, Haiping,Liao, Linbu,Cai, Yunting,et al. IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques[J]. METHODS,2019,166:57-65.
APA
Zhang, Haiping,Liao, Linbu,Cai, Yunting,Hu, Yuhui,&Wang, Hao.(2019).IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques.METHODS,166,57-65.
MLA
Zhang, Haiping,et al."IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques".METHODS 166(2019):57-65.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Haiping]的文章
[Liao, Linbu]的文章
[Cai, Yunting]的文章
百度学术
百度学术中相似的文章
[Zhang, Haiping]的文章
[Liao, Linbu]的文章
[Cai, Yunting]的文章
必应学术
必应学术中相似的文章
[Zhang, Haiping]的文章
[Liao, Linbu]的文章
[Cai, Yunting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。