中文版 | English
题名

System-in-package design using multi-task memetic learning and optimization

作者
通讯作者Wang, Zhenkun
发表日期
2021-09-01
DOI
发表期刊
ISSN
1865-9284
EISSN
1865-9292
卷号14页码:45-59
摘要

System-in-Package (SiP) is an advanced packaging technology and developing rapidly in semiconductor industry. Electronic modules of this package type are individual integrated systems for specific applications. Therefore, those modules are usually characterized by multiple encapsulated components and sophisticated internal structures. However, such complexity brings great challenges to package design. Traditional methods, like design of experiments, response surface analysis, are widely used in this field, but their effectiveness drops rapidly due to increasing complexity. In current scenarios, not only do the amount of design variables increases, but also the modules have diverse design tasks to satisfy. Thereby, package design for SiP modules is a multi-task optimization problem. To resolve this issue, we propose a multi-task memetic learning and optimization algorithm, in which multi-output Gaussian process model and multifactorial evolutionary algorithm are employed. In this work, knowledge transfer between different tasks is activated during both the surrogate modeling and model optimization procedures. Several variants of the proposed algorithm are tested, and their modeling accuracy and optimization efficiency were compared. This interdisciplinary study shows the benefits of the memetic knowledge transfer mechanism in improving modeling and optimizing efficacy in multi-task scenarios and presents a viable approach to achieve both automation and optimization for complicated packaging design.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Project, Ministry of Science and Technology, China[2018AAA0101301] ; National Natural Science Foundation of China[61876163]
WOS研究方向
Computer Science ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Operations Research & Management Science
WOS记录号
WOS:000700528700001
出版者
EI入藏号
20213910937560
EI主题词
Design of experiments ; Evolutionary algorithms ; Gaussian distribution ; Gaussian noise (electronic) ; Knowledge management ; Learning algorithms ; Learning systems ; Optimization ; Packaging ; Semiconductor device manufacture
EI分类号
Packaging, General:694.1 ; Semiconductor Devices and Integrated Circuits:714.2 ; Machine Learning:723.4.2 ; Computer Applications:723.5 ; Engineering Research:901.3 ; Information Retrieval and Use:903.3 ; Optimization Techniques:921.5 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253377
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Dai, Weijing,Wang, Zhenkun,Xue, Ke. System-in-package design using multi-task memetic learning and optimization[J]. Memetic Computing,2021,14:45-59.
APA
Dai, Weijing,Wang, Zhenkun,&Xue, Ke.(2021).System-in-package design using multi-task memetic learning and optimization.Memetic Computing,14,45-59.
MLA
Dai, Weijing,et al."System-in-package design using multi-task memetic learning and optimization".Memetic Computing 14(2021):45-59.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dai, Weijing]的文章
[Wang, Zhenkun]的文章
[Xue, Ke]的文章
百度学术
百度学术中相似的文章
[Dai, Weijing]的文章
[Wang, Zhenkun]的文章
[Xue, Ke]的文章
必应学术
必应学术中相似的文章
[Dai, Weijing]的文章
[Wang, Zhenkun]的文章
[Xue, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。