中文版 | English
题名

Gaussian-guided feature alignment for unsupervised cross-subject adaptation

作者
通讯作者Fu,Chenglong
发表日期
2022-02-01
DOI
发表期刊
ISSN
0031-3203
卷号122
摘要
Human activities recognition (HAR) and human intent recognition (HIR) are important for medical diagnosis and human-robot interaction. HAR and HIR usually rely on the signals of some wearable sensors, such as inertial measurement unit (IMU), but these signals may be user-dependent, which degrades the performance of the recognition algorithm on new subjects. Traditional supervised learning methods require labeling signals and training specific classifiers for each new subject, which is burdensome. To deal with this problem, this paper proposes a novel non-adversarial cross-subject adaptation method called Gaussian-guided feature alignment (GFA). The proposed GFA metric quantifies the discrepancy between the labeled features of source subjects and the unlabeled features of target subjects so that minimizing the GFA metric leads to the alignment of the source and target features. The GFA metric is estimated by calculating the divergence between the feature distribution and Gaussian distribution, as well as the mean squared error of the mean and variance between source and target features. This paper analytically proves the effect of the GFA metric and validates its performance using three public human activity datasets. Experimental results show that the proposed GFA achieves 1% higher target classification accuracy and 0.5% lower variance than state-of-the-art methods in case of cross-subject validation. These results indicate that the proposed GFA is feasible for improving the generalization of the HAR and HIR.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000704893500013
EI入藏号
20213910955059
EI主题词
Alignment ; Diagnosis ; Human robot interaction ; Learning systems ; Mean square error ; Wearable sensors
EI分类号
Medicine and Pharmacology:461.6 ; Mechanical Devices:601.1 ; Robotics:731.5 ; Probability Theory:922.1 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85115779175
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253412
专题工学院_机械与能源工程系
作者单位
1.Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems,Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mechanical Engineering,The University of British Columbia,Vancouver,Canada
4.Department of Electrical and Computer Engineering,The University of British Columbia,Vancouver,Canada
第一作者单位机械与能源工程系;  南方科技大学
通讯作者单位机械与能源工程系;  南方科技大学
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Zhang,Kuangen,Chen,Jiahong,Wang,Jing,et al. Gaussian-guided feature alignment for unsupervised cross-subject adaptation[J]. PATTERN RECOGNITION,2022,122.
APA
Zhang,Kuangen,Chen,Jiahong,Wang,Jing,Leng,Yuquan,de Silva,Clarence W.,&Fu,Chenglong.(2022).Gaussian-guided feature alignment for unsupervised cross-subject adaptation.PATTERN RECOGNITION,122.
MLA
Zhang,Kuangen,et al."Gaussian-guided feature alignment for unsupervised cross-subject adaptation".PATTERN RECOGNITION 122(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Kuangen]的文章
[Chen,Jiahong]的文章
[Wang,Jing]的文章
百度学术
百度学术中相似的文章
[Zhang,Kuangen]的文章
[Chen,Jiahong]的文章
[Wang,Jing]的文章
必应学术
必应学术中相似的文章
[Zhang,Kuangen]的文章
[Chen,Jiahong]的文章
[Wang,Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。