中文版 | English
题名

A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images

作者
通讯作者Liu, Jiang
DOI
发表日期
2020
会议名称
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISSN
1062-922X
ISBN
978-1-7281-8527-9
会议录名称
卷号
2020-October
页码
662-668
会议日期
OCT 11-14, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Nuclear cataract is one of the most common types of cataract. In the recent, ophthalmologists are increasingly using anterior segment optical coherence tomography (AS-OCT) images to diagnose many ocular diseases including cataract. The relationship between cataract and the lens opacity based on AS-OCT images has been being studied in clinical pioneer research. However, using AS-OCT images to classify cataract automatically based on computer-aided diagnosis (CAD) technique has not been seriously studied. This paper proposes a novel Convolutional Neural Network (CNN) model named GraNet for nuclear cataract classification based on AS-OCT images. In the GraNet, we introduce a grading block to learn high-level feature representations based on the pointwise convolution method. To further improve the classification performance, we propose a simple and efficient cross-training method is comprised of focal loss and cross-entropy loss. Extensive experiments are conducted on the AS-OCT image dataset, the results demonstrate that the proposed methods achieve better nuclear cataract classification results than baselines.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000687430600102
EI入藏号
20210209743158
EI主题词
Classification (of information) ; Clinical research ; Computer aided diagnosis ; Convolution ; Convolutional neural networks ; Grading ; Image classification ; Image segmentation ; Learning systems ; Optical tomography ; Tomography
EI分类号
Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9283218
引用统计
被引频次[WOS]:18
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253420
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
2.Tomey Corp, Nagoya, Aichi, Japan
3.Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, Guangzhou, Peoples R China
4.Harbin Inst Technol, Harbin, Peoples R China
5.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Xiaoqing,Xiao, Zunjie,Higashita, Risa,et al. A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:662-668.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A_Novel_Deep_Learnin(423KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Higashita, Risa]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Higashita, Risa]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Higashita, Risa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。