题名 | A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images |
作者 | |
通讯作者 | Liu, Jiang |
DOI | |
发表日期 | 2020
|
会议名称 | IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-7281-8527-9
|
会议录名称 | |
卷号 | 2020-October
|
页码 | 662-668
|
会议日期 | OCT 11-14, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Nuclear cataract is one of the most common types of cataract. In the recent, ophthalmologists are increasingly using anterior segment optical coherence tomography (AS-OCT) images to diagnose many ocular diseases including cataract. The relationship between cataract and the lens opacity based on AS-OCT images has been being studied in clinical pioneer research. However, using AS-OCT images to classify cataract automatically based on computer-aided diagnosis (CAD) technique has not been seriously studied. This paper proposes a novel Convolutional Neural Network (CNN) model named GraNet for nuclear cataract classification based on AS-OCT images. In the GraNet, we introduce a grading block to learn high-level feature representations based on the pointwise convolution method. To further improve the classification performance, we propose a simple and efficient cross-training method is comprised of focal loss and cross-entropy loss. Extensive experiments are conducted on the AS-OCT image dataset, the results demonstrate that the proposed methods achieve better nuclear cataract classification results than baselines. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000687430600102
|
EI入藏号 | 20210209743158
|
EI主题词 | Classification (of information)
; Clinical research
; Computer aided diagnosis
; Convolution
; Convolutional neural networks
; Grading
; Image classification
; Image segmentation
; Learning systems
; Optical tomography
; Tomography
|
EI分类号 | Biomedical Engineering:461.1
; Information Theory and Signal Processing:716.1
; Optical Devices and Systems:741.3
; Imaging Techniques:746
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9283218 |
引用统计 |
被引频次[WOS]:18
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253420 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 2.Tomey Corp, Nagoya, Aichi, Japan 3.Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, Guangzhou, Peoples R China 4.Harbin Inst Technol, Harbin, Peoples R China 5.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Xiaoqing,Xiao, Zunjie,Higashita, Risa,et al. A Novel Deep Learning Method for Nuclear Cataract Classification Based on Anterior Segment Optical Coherence Tomography Images[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:662-668.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
A_Novel_Deep_Learnin(423KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论