中文版 | English
题名

An In2O3 Nanotubes based Gas Sensor Array combined with Machine Learning Algorithms for Trimethylamine Detection

作者
通讯作者Wang, Fei
DOI
发表日期
2021
会议名称
16th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS)
ISSN
2474-3747
EISSN
2474-3755
ISBN
978-1-6654-3008-1
会议录名称
页码
1042-1046
会议日期
APR 25-29, 2021
会议地点
null,Xiamen,PEOPLES R CHINA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
This work focuses on developing an electronic nose system with machine learning algorithm for detection of trimethylamine (TMA). Pure and Ga-doped In2O3 nanotubes are synthesized by a simple electrospinning method, and four kinds of gas sensors (pristine, 1% Ga, 10% Ga, and 20% Ga-doped In2O3) are fabricated to form a sensor array. Results show that the sensor array can classify TMA effectively from interference gases (xylene, ethanol, hydrogen sulfide) by a support vector machine (SVM) algorithm. Several algorithms, including radial basis function neural network (RBFNN), back propagation neural network (BPNN) and principal component analysis combined with linear regression (PCA-LR), are used to predict the concentration level of each gas. For TMA gas, the trained algorithms can predict its concentration with average relative errors of 1.22% for RBFNN, 2.5% for BPNN and 13.34% for PCA-LR. Furthermore, the binary mixtures of TMA and ethanol are measured and used to train the above algorithms, and the lowest average relative error of 1.74% is achieved in the case of RBFNN algorithm.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Program of China[2020YFB2008604]
WOS研究方向
Engineering ; Science & Technology - Other Topics ; Materials Science
WOS类目
Engineering, Electrical & Electronic ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:000693407600125
EI入藏号
20213410818127
EI主题词
Backpropagation ; Binary mixtures ; Electronic nose ; Ethanol ; Gallium compounds ; Gas detectors ; Gases ; Hydrogen sulfide ; Indium compounds ; Nanosensors ; Nanotubes ; Radial basis function networks ; Sensory aids ; Sulfur compounds ; Support vector machines
EI分类号
Rehabilitation Engineering and Assistive Technology:461.5 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Nanotechnology:761 ; Chemistry:801 ; Chemical Products Generally:804 ; Accidents and Accident Prevention:914.1 ; Solid State Physics:933
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9451424
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253424
专题工学院_深港微电子学院
作者单位
Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China
第一作者单位深港微电子学院
通讯作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Ren, Wenjie,Zhao, Changhui,Liu, Yingming,et al. An In2O3 Nanotubes based Gas Sensor Array combined with Machine Learning Algorithms for Trimethylamine Detection[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1042-1046.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ren, Wenjie]的文章
[Zhao, Changhui]的文章
[Liu, Yingming]的文章
百度学术
百度学术中相似的文章
[Ren, Wenjie]的文章
[Zhao, Changhui]的文章
[Liu, Yingming]的文章
必应学术
必应学术中相似的文章
[Ren, Wenjie]的文章
[Zhao, Changhui]的文章
[Liu, Yingming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。