题名 | An In2O3 Nanotubes based Gas Sensor Array combined with Machine Learning Algorithms for Trimethylamine Detection |
作者 | |
通讯作者 | Wang, Fei |
DOI | |
发表日期 | 2021
|
会议名称 | 16th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS)
|
ISSN | 2474-3747
|
EISSN | 2474-3755
|
ISBN | 978-1-6654-3008-1
|
会议录名称 | |
页码 | 1042-1046
|
会议日期 | APR 25-29, 2021
|
会议地点 | null,Xiamen,PEOPLES R CHINA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | This work focuses on developing an electronic nose system with machine learning algorithm for detection of trimethylamine (TMA). Pure and Ga-doped In2O3 nanotubes are synthesized by a simple electrospinning method, and four kinds of gas sensors (pristine, 1% Ga, 10% Ga, and 20% Ga-doped In2O3) are fabricated to form a sensor array. Results show that the sensor array can classify TMA effectively from interference gases (xylene, ethanol, hydrogen sulfide) by a support vector machine (SVM) algorithm. Several algorithms, including radial basis function neural network (RBFNN), back propagation neural network (BPNN) and principal component analysis combined with linear regression (PCA-LR), are used to predict the concentration level of each gas. For TMA gas, the trained algorithms can predict its concentration with average relative errors of 1.22% for RBFNN, 2.5% for BPNN and 13.34% for PCA-LR. Furthermore, the binary mixtures of TMA and ethanol are measured and used to train the above algorithms, and the lowest average relative error of 1.74% is achieved in the case of RBFNN algorithm. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2020YFB2008604]
|
WOS研究方向 | Engineering
; Science & Technology - Other Topics
; Materials Science
|
WOS类目 | Engineering, Electrical & Electronic
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000693407600125
|
EI入藏号 | 20213410818127
|
EI主题词 | Backpropagation
; Binary mixtures
; Electronic nose
; Ethanol
; Gallium compounds
; Gas detectors
; Gases
; Hydrogen sulfide
; Indium compounds
; Nanosensors
; Nanotubes
; Radial basis function networks
; Sensory aids
; Sulfur compounds
; Support vector machines
|
EI分类号 | Rehabilitation Engineering and Assistive Technology:461.5
; Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Nanotechnology:761
; Chemistry:801
; Chemical Products Generally:804
; Accidents and Accident Prevention:914.1
; Solid State Physics:933
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9451424 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253424 |
专题 | 工学院_深港微电子学院 |
作者单位 | Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Ren, Wenjie,Zhao, Changhui,Liu, Yingming,et al. An In2O3 Nanotubes based Gas Sensor Array combined with Machine Learning Algorithms for Trimethylamine Detection[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1042-1046.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论