题名 | A Value-Function-based Interior-point Method for Non-convex Bi-level Optimization |
作者 | |
通讯作者 | Zhang, Jin |
发表日期 | 2021
|
会议名称 | International Conference on Machine Learning (ICML)
|
ISSN | 2640-3498
|
会议录名称 | |
卷号 | 139
|
会议日期 | JUL 18-24, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 1269 LAW ST, SAN DIEGO, CA, UNITED STATES
|
出版者 | |
摘要 | Bi-level optimization model is able to capture a wide range of complex learning tasks with practical interest. Due to the witnessed efficiency in solving bi-level programs, gradient-based methods have gained popularity in the machine learning community. In this work, we propose a new gradient-based solution scheme, namely, the Bilevel Value-Function-based Interior-point Method (BVFIM). Following the main idea of the log-barrier interior-point scheme, we penalize the regularized value function of the lower level problem into the upper level objective. By further solving a sequence of differentiable unconstrained approximation problems, we consequently derive a sequential programming scheme. The numerical advantage of our scheme relies on the fact that, when gradient methods are applied to solve the approximation problem, we successfully avoid computing any expensive Hessian-vector or Jacobian-vector product. We prove the convergence without requiring any convexity assumption on either the upper level or the lower level objective. Experiments demonstrate the efficiency of the proposed BVFIM on non-convex bi-level problems. |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61922019,61733002,11971220]
; LiaoNing Revitalization Talents Program[XLYC1807088]
; Shenzhen Science and Technology Program[RCYX20200714114700072]
; Guangdong Basic and Applied Basic Research Foundation[2019A1515011152]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000683104606083
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253427 |
专题 | 理学院_数学系 |
作者单位 | 1.Dalian Univ Technol, DUT RU Int Sch Informat Sci & Engn, Dalian, Peoples R China 2.Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian, Peoples R China 3.Pazhou Lab, Guangzhou, Peoples R China 4.Univ Hong Kong, Dept Math, Hong Kong, Peoples R China 5.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China 6.Natl Ctr Appl Math Shenzhen, Shenzhen, Peoples R China |
通讯作者单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Liu, Risheng,Liu, Xuan,Yuan, Xiaoming,et al. A Value-Function-based Interior-point Method for Non-convex Bi-level Optimization[C]. 1269 LAW ST, SAN DIEGO, CA, UNITED STATES:JMLR-JOURNAL MACHINE LEARNING RESEARCH,2021.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论