中文版 | English
题名

Evolving Neural Networks for Prediction with Negative Correlation Search: Application in Consumer Demand Forecasting

作者
通讯作者Zhu Yichen
DOI
发表日期
2020
会议名称
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
ISBN
978-1-7281-2548-0
会议录名称
页码
384-391
会议日期
DEC 01-04, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Neuroevolution is a powerful approach for learning neural networks for a large variety of machine learning applications. This paper describes a new approach that uses Negatively Correlated Search (NCS) to extend the basic NEAT neur. This approach uses NCS as a means for learning a population of negatively correlated neural network solutions, meaning that the individuals in the population are suited for performing well in different kinds of problem cases (or examples). An empirical evaluation of the proposed methodology we term NCS-NEAT leads to improved performance over basic NEAT in terms of accuracy and problem specific criteria and is a promising way to scale neuroevolution up to handle larger datasets without placing restrictions on the topology neural networks that are able to be learned. Two different machine learning problem classes were selected to he representative of a broad range of applications of deep learning and neuroevolution: the first is a price forecasting problem to predict the prices of mobile phones based on their characteristics; the second is a reinforcement learning test problem to validate the novel approach in a different type of problem.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号
WOS:000682772900051
EI入藏号
20210409827649
EI主题词
Deep learning ; Forecasting ; Intelligent computing ; Learning systems ; Reinforcement learning
EI分类号
Artificial Intelligence:723.4
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308565
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253428
专题工学院_计算机科学与工程系
作者单位
Southern Univ Sci & Technol SUSTech, Comp Sci & Engn, Shenzhen, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhu Yichen,Chen Yang,Ghandar, Adam. Evolving Neural Networks for Prediction with Negative Correlation Search: Application in Consumer Demand Forecasting[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:384-391.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu Yichen]的文章
[Chen Yang]的文章
[Ghandar, Adam]的文章
百度学术
百度学术中相似的文章
[Zhu Yichen]的文章
[Chen Yang]的文章
[Ghandar, Adam]的文章
必应学术
必应学术中相似的文章
[Zhu Yichen]的文章
[Chen Yang]的文章
[Ghandar, Adam]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。