题名 | Evolving Neural Networks for Prediction with Negative Correlation Search: Application in Consumer Demand Forecasting |
作者 | |
通讯作者 | Zhu Yichen |
DOI | |
发表日期 | 2020
|
会议名称 | IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
|
ISBN | 978-1-7281-2548-0
|
会议录名称 | |
页码 | 384-391
|
会议日期 | DEC 01-04, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Neuroevolution is a powerful approach for learning neural networks for a large variety of machine learning applications. This paper describes a new approach that uses Negatively Correlated Search (NCS) to extend the basic NEAT neur. This approach uses NCS as a means for learning a population of negatively correlated neural network solutions, meaning that the individuals in the population are suited for performing well in different kinds of problem cases (or examples). An empirical evaluation of the proposed methodology we term NCS-NEAT leads to improved performance over basic NEAT in terms of accuracy and problem specific criteria and is a promising way to scale neuroevolution up to handle larger datasets without placing restrictions on the topology neural networks that are able to be learned. Two different machine learning problem classes were selected to he representative of a broad range of applications of deep learning and neuroevolution: the first is a price forecasting problem to predict the prices of mobile phones based on their characteristics; the second is a reinforcement learning test problem to validate the novel approach in a different type of problem. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000682772900051
|
EI入藏号 | 20210409827649
|
EI主题词 | Deep learning
; Forecasting
; Intelligent computing
; Learning systems
; Reinforcement learning
|
EI分类号 | Artificial Intelligence:723.4
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308565 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253428 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern Univ Sci & Technol SUSTech, Comp Sci & Engn, Shenzhen, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhu Yichen,Chen Yang,Ghandar, Adam. Evolving Neural Networks for Prediction with Negative Correlation Search: Application in Consumer Demand Forecasting[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:384-391.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论