中文版 | English
题名

Skew-morphisms of nonabelian characteristically simple groups

作者
通讯作者Du,Shaofei
发表日期
2022
DOI
发表期刊
ISSN
0097-3165
EISSN
1096-0899
卷号185
摘要
A skew-morphism of a finite group G is a permutation σ on G fixing the identity element such that the product of 〈σ〉 with the left regular representation of G forms a permutation group on G. This permutation group is called the skew-product group of σ. The skew-morphism was introduced as an algebraic tool to investigate regular Cayley maps. In this paper, we characterize skew-products of skew-morphisms of finite nonabelian characteristically simple groups (see Theorem 1.2) and the corresponding regular Cayley maps (see Theorem 1.6).
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
WOS记录号
WOS:000710308500001
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85115986755
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253429
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.School of Mathematical Sciences,Xiamen University,Xiamen,361005,China
2.School of Mathematical Sciences,Capital Normal University,Beijing,100048,China
3.SUSTech International Center for Mathematics,Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Chen,Jiyong,Du,Shaofei,Li,Cai Heng. Skew-morphisms of nonabelian characteristically simple groups[J]. JOURNAL OF COMBINATORIAL THEORY SERIES A,2022,185.
APA
Chen,Jiyong,Du,Shaofei,&Li,Cai Heng.(2022).Skew-morphisms of nonabelian characteristically simple groups.JOURNAL OF COMBINATORIAL THEORY SERIES A,185.
MLA
Chen,Jiyong,et al."Skew-morphisms of nonabelian characteristically simple groups".JOURNAL OF COMBINATORIAL THEORY SERIES A 185(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Jiyong]的文章
[Du,Shaofei]的文章
[Li,Cai Heng]的文章
百度学术
百度学术中相似的文章
[Chen,Jiyong]的文章
[Du,Shaofei]的文章
[Li,Cai Heng]的文章
必应学术
必应学术中相似的文章
[Chen,Jiyong]的文章
[Du,Shaofei]的文章
[Li,Cai Heng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。