中文版 | English
题名

Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States

作者
通讯作者Shi,Haiyun
发表日期
2021-10-01
DOI
发表期刊
EISSN
2214-5818
卷号37
摘要
Study region: Central eastern continental United States. Study focus: Groundwater level prediction is of great significance for the management of global water resources. Recently, machine learning, which can deal with highly nonlinear interactions among complex hydrological factors, has been widely applied to groundwater level prediction. However, previous studies mainly focused on improving the simulation performance in specific regions using different machine learning methods, while this study focused on the impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning. New hydrological insights for the region: A gated recurrent unit (GRU) neural network was built for groundwater level simulation in 78 catchments in the study region, and principal component analysis was used to cluster a variety of catchment hydrological variables and determine the input variables for the GRU model. Detrended fluctuation analysis was applied to analyze the autocorrelation of groundwater level in each catchment. This study further explored the influences of the hydrogeological properties of different catchments and the autocorrelation of groundwater levels on machining learning simulations. The results showed that the GRU model performed better in regions where hydrogeological properties could promote more effective responses of groundwater to external changes. Moreover, a negative correlation between the simulation performance of machine learning and the autocorrelation of the groundwater level was found.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
WOS记录号
WOS:000700207800001
Scopus记录号
2-s2.0-85115785991
来源库
Scopus
引用统计
被引频次[WOS]:47
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253465
专题工学院_环境科学与工程学院
作者单位
1.Department of Civil and Environmental Engineering,National University of Singapore,Singapore
2.State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Cai,Hejiang,Shi,Haiyun,Liu,Suning,et al. Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States[J]. Journal of Hydrology: Regional Studies,2021,37.
APA
Cai,Hejiang,Shi,Haiyun,Liu,Suning,&Babovic,Vladan.(2021).Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States.Journal of Hydrology: Regional Studies,37.
MLA
Cai,Hejiang,et al."Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States".Journal of Hydrology: Regional Studies 37(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Hejiang]的文章
[Shi,Haiyun]的文章
[Liu,Suning]的文章
百度学术
百度学术中相似的文章
[Cai,Hejiang]的文章
[Shi,Haiyun]的文章
[Liu,Suning]的文章
必应学术
必应学术中相似的文章
[Cai,Hejiang]的文章
[Shi,Haiyun]的文章
[Liu,Suning]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。