中文版 | English
题名

Optimal bounds on state transfer under quantum channels with application to spin system engineering

作者
通讯作者Nie, Xinfang; Lu, Dawei; Li, Jun
发表日期
2019-08-12
DOI
发表期刊
ISSN
2469-9926
EISSN
2469-9934
卷号100期号:2
摘要
Modern applications of quantum control in quantum information science and technology require the precise characterization of quantum states and quantum channels. In particular, high-performance quantum state engineering often demands that quantum states are transferred with optimal efficiency via realizable controlled evolution, the latter often modeled by quantum channels. When an appropriate quantum control model for an interested system is constructed, the exploration of optimal bounds on state transfer for the underlying quantum channel is then an important task. In this work, we analyze the state transfer efficiency problem for different classes of quantum channels, including unitary, mixed unitary, and Markovian. We then apply the theory to nuclear magnetic resonance (NMR) experiments. We show that two most commonly used control techniques in NMR, namely gradient field control and phase cycling, can be described by mixed unitary channels. Then we show that employing mixed unitary channels does not extend the unitarily accessible region of states. Also, we present a strategy of optimal experiment design, which incorporates coherent radio-frequency field control, gradient field control, and phase cycling, aiming at maximizing state transfer efficiency and meanwhile minimizing the number of experiments required. Finally, we perform pseudopure state preparation experiments on two- and three-spin systems, in order to test the bound theory and to demonstrate the usefulness of nonunitary control means.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Zhejiang Provincial Natural Science Foundation of China[LQ19A050001]
WOS研究方向
Optics ; Physics
WOS类目
Optics ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:000480387400007
出版者
EI入藏号
20193407340789
EI主题词
Control theory ; Efficiency ; Nuclear magnetic resonance ; Quantum channel ; Quantum communication ; Quantum entanglement ; Quantum optics ; Spin dynamics
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Information Theory and Signal Processing:716.1 ; Control Systems:731.1 ; Production Engineering:913.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/25347
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Zhejiang Univ Technol, Coll Sci, Collaborat Innovat Ctr Biomed Phys Informat Techn, Hangzhou 310023, Zhejiang, Peoples R China
2.Zhejiang Univ Sci & Technol, Dept Phys, Hangzhou 310023, Zhejiang, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
5.Ctr Quantum Comp, Peng Cheng Lab, Shenzhen 518055, Peoples R China
6.Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位量子科学与工程研究院;  物理系;  南方科技大学
推荐引用方式
GB/T 7714
Zheng, Wenqiang,Wang, Hengyan,Xin, Tao,et al. Optimal bounds on state transfer under quantum channels with application to spin system engineering[J]. PHYSICAL REVIEW A,2019,100(2).
APA
Zheng, Wenqiang,Wang, Hengyan,Xin, Tao,Nie, Xinfang,Lu, Dawei,&Li, Jun.(2019).Optimal bounds on state transfer under quantum channels with application to spin system engineering.PHYSICAL REVIEW A,100(2).
MLA
Zheng, Wenqiang,et al."Optimal bounds on state transfer under quantum channels with application to spin system engineering".PHYSICAL REVIEW A 100.2(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Zheng-2019-Optimal b(662KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Wenqiang]的文章
[Wang, Hengyan]的文章
[Xin, Tao]的文章
百度学术
百度学术中相似的文章
[Zheng, Wenqiang]的文章
[Wang, Hengyan]的文章
[Xin, Tao]的文章
必应学术
必应学术中相似的文章
[Zheng, Wenqiang]的文章
[Wang, Hengyan]的文章
[Xin, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。