中文版 | English
题名

Expressivity of quantum neural networks

作者
发表日期
2021-09-01
DOI
发表期刊
ISSN
2643-1564
卷号3期号:3
摘要
In this work, we address the question whether a sufficiently deep quantum neural network can approximate a target function as accurate as possible. We start with typical physical situations that the target functions are physical observables, and then we extend our discussion to situations that the learning targets are not directly physical observables, but can be expressed as physical observables in an enlarged Hilbert space with multiple replicas, such as the Loschmidt echo and the Rényi entropy. The main finding is that an accurate approximation is possible only when all the input wave functions in the dataset do not span the entire Hilbert space that the quantum circuit acts on, and more precisely, the Hilbert space dimension of the former has to be less than half of the Hilbert space dimension of the latter. In some cases, this requirement can be satisfied automatically because of the intrinsic properties of the dataset, for instance, when the input wave function has to be symmetric between different replicas. And if this requirement cannot be satisfied by the dataset, we show that the expressivity capabilities can be restored by adding one ancillary qubit at which the wave function is always fixed at input. Our studies point toward establishing a quantum neural network analogy of the universal approximation theorem that lays the foundation for expressivity of classical neural networks.
相关链接[Scopus记录]
收录类别
ESCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000689746100004
EI入藏号
20213510839702
EI主题词
Deep neural networks ; Hilbert spaces ; Vector spaces ; Wave functions
EI分类号
Mathematics:921
Scopus记录号
2-s2.0-85115668335
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253501
专题理学院_物理系
量子科学与工程研究院
作者单位
1.Institute for Advanced Study,Tsinghua University,Beijing,100084,China
2.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Guangdong,Shenzhen,518055,China
3.Institute for Quantum Information and Matter,California Institute of Technology,Pasadena,91125,United States
4.Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena,91125,United States
推荐引用方式
GB/T 7714
Wu,Yadong,Yao,Juan,Zhang,Pengfei,et al. Expressivity of quantum neural networks[J]. Physical Review Research,2021,3(3).
APA
Wu,Yadong,Yao,Juan,Zhang,Pengfei,&Zhai,Hui.(2021).Expressivity of quantum neural networks.Physical Review Research,3(3).
MLA
Wu,Yadong,et al."Expressivity of quantum neural networks".Physical Review Research 3.3(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Yadong]的文章
[Yao,Juan]的文章
[Zhang,Pengfei]的文章
百度学术
百度学术中相似的文章
[Wu,Yadong]的文章
[Yao,Juan]的文章
[Zhang,Pengfei]的文章
必应学术
必应学术中相似的文章
[Wu,Yadong]的文章
[Yao,Juan]的文章
[Zhang,Pengfei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。