中文版 | English
题名

Distributed Learning over IRS-Assisted Intelligent Wireless Networks

作者
DOI
发表日期
2021-06-01
ISSN
1550-3607
ISBN
978-1-7281-7123-4
会议录名称
页码
1-6
会议日期
14-23 June 2021
会议地点
Montreal, QC, Canada
摘要
Driven by the new era of big data and artificial intelligence (AI), as well as the increasing demands for the privacy protection, how to deployment the AI on wireless networks is drawing increasing attention. In this paper, we investigate the distributed learning mechanism of hosting AI over intelligent reflecting surface (IRS)-assisted wireless networks, where IRS is utilized to enhance communication in a cost-effective and energy-efficient manner. Firstly, a distributed learning framework is formulated based on the alternating direction method of multipliers (ADMM) to achieve the parallel processing of the objective function. Specifically, in the proposed architecture each user updates the learning model with its own data and uploads it to the global model through wireless networks. Thence, a joint passive phase shift of IRS and user scheduling scheme based on a metric of efficiency-efficacy weighted sum (EEWS) is formulated to explore both the learning efficiency and efficacy. In addition, aiming at improving the one-round learning efficiency, a grouping-based suboptimal solution about IRS's phase is adopted to realize the max-min fair transmission. Simulation results demonstrate the relationship among the number of users involved, the scale of IRS and the learning performance.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20213910951578
EI主题词
Artificial intelligence ; Cost effectiveness ; Energy efficiency ; Learning systems
EI分类号
Energy Conservation:525.2 ; Radio Systems and Equipment:716.3 ; Data Communication, Equipment and Techniques:722.3 ; Artificial Intelligence:723.4 ; Industrial Economics:911.2
Scopus记录号
2-s2.0-85115700065
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9500398
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253541
专题南方科技大学
工学院_电子与电气工程系
作者单位
1.Beijing Jiaotong University,School of Electronic and Information Engineering,Beijing,100044,China
2.Southern University of Science and Technology,University Key Laboratory of Advanced Wireless Communications of Guangdong Province,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Ma,Xiaoting,Zhao,Junhui,Gong,Yi,et al. Distributed Learning over IRS-Assisted Intelligent Wireless Networks[C],2021:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma,Xiaoting]的文章
[Zhao,Junhui]的文章
[Gong,Yi]的文章
百度学术
百度学术中相似的文章
[Ma,Xiaoting]的文章
[Zhao,Junhui]的文章
[Gong,Yi]的文章
必应学术
必应学术中相似的文章
[Ma,Xiaoting]的文章
[Zhao,Junhui]的文章
[Gong,Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。