题名 | Reconfigurable Intelligent Surface Assisted Edge Machine Learning |
作者 | |
DOI | |
发表日期 | 2021-06-01
|
ISSN | 1550-3607
|
ISBN | 978-1-7281-7123-4
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 14-23 June 2021
|
会议地点 | Montreal, QC, Canada
|
摘要 | The ever-growing popularity and rapid improving of artificial intelligence (AI) have raised rethinking on the evolution of wireless networks. Mobile edge computing (MEC) provides a natural platform for AI applications since it provides rich computation resources to train AI models, as well as low-latency access to the data generated by mobile and Internet of Things devices. In this paper, we present an infrastructure to perform machine learning tasks at an MEC server with the assistance of a reconfigurable intelligent surface (RIS). In contrast to conventional communication systems where the principal criteria are to maximize the throughput, we aim at optimizing the learning performance. Specifically, we minimize the maximum learning error of all users by jointly optimizing the beamforming vectors of the base station and the phase-shift matrix of the RIS. An alternating optimization-based framework is proposed to optimize the two terms iteratively, where closed-form expressions of the beamforming vectors are derived, and an alternating direction method of multipliers (ADMM)-based algorithm is designed together with an error level searching framework to effectively solve the nonconvex optimization problem of the phase-shift matrix. Simulation results demonstrate significant gains of deploying an RIS and validate the advantages of our proposed algorithms over various benchmarks. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20213910951825
|
EI主题词 | Beamforming
; Iterative methods
; Machine learning
; Matrix algebra
|
EI分类号 | Electromagnetic Waves in Relation to Various Structures:711.2
; Digital Computers and Systems:722.4
; Algebra:921.1
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85115698553
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9500445 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253542 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Southern University of Science and Technology,Department of Electrical and Electronic Engineering,China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Huang,Shanfeng,Wang,Shuai,Wang,Rui,et al. Reconfigurable Intelligent Surface Assisted Edge Machine Learning[C],2021:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论