中文版 | English
题名

Guided Adversarial Adaptation Network for Retinal and Choroidal Layer Segmentation

作者
通讯作者Zhao,Yitian
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12970 LNCS
页码
82-91
摘要
Morphological changes, e.g. thickness of retinal or choroidal layers in Optical coherence tomography (OCT), is of great importance in clinic applications as they reveal some specific eye diseases and other systemic conditions. However, there are many challenges in the accurate segmentation of retinal and choroidal layers, such as low contrast between different tissue layers and variations between images acquired from multiple devices. There is a strong demand on accurate and robust segmentation models with high generalization ability to deal with images from different devices. This paper proposes a new unsupervised guided adversarial adaptation (GAA) network to segment both retinal layers and the choroid in OCT images. To our best knowledge, this is the first work to extract retinal and choroidal layers in a unified manner. It first introduces a dual encoder structure to ensure that the encoding path of the source domain image is independent of that of the target domain image. By integrating the dual encoder into an adversarial framework, the holistic GAA network significantly alleviates the performance degradation of the source domain image segmentation caused by parameter entanglement with the encoder of the target domain and also improves the segmentation performance of the target domain images. Experimental results show that the proposed network outperforms other state-of-the-art methods in retinal and choroidal layer segmentation.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20213910959262
EI主题词
Image enhancement ; Image segmentation ; Ophthalmology ; Optical tomography
EI分类号
Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Optical Devices and Systems:741.3
Scopus记录号
2-s2.0-85115876454
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253567
专题工学院_计算机科学与工程系
作者单位
1.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu,China
2.Cixi Institute of Biomedical Engineering,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo,China
3.University of Liverpool,Liverpool,United Kingdom
4.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
5.School of Control Science and Engineering,Shandong University,Jinan,China
推荐引用方式
GB/T 7714
Zhao,Jingyu,Zhang,Jiong,Deng,Bin,et al. Guided Adversarial Adaptation Network for Retinal and Choroidal Layer Segmentation[C],2021:82-91.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Jingyu]的文章
[Zhang,Jiong]的文章
[Deng,Bin]的文章
百度学术
百度学术中相似的文章
[Zhao,Jingyu]的文章
[Zhang,Jiong]的文章
[Deng,Bin]的文章
必应学术
必应学术中相似的文章
[Zhao,Jingyu]的文章
[Zhang,Jiong]的文章
[Deng,Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。