中文版 | English
题名

FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12970 LNCS
页码
42-51
摘要
Optical coherence tomography angiography (OCTA) is a recent advance in ophthalmic imaging, which provides detailed visualization of two important anatomical landmarks, namely foveal avascular zone (FAZ) and retinal vessels (RV). Studies have shown that both FAZ and RV play significant roles in the diagnoses of various eye-related diseases. Therefore, accurate segmentation of FAZ and RV from OCTA images is highly in need. However, due to complicated microstructures and inhomogeneous image quality, there is still room for improvement in existing methods. In this paper, we propose a novel and efficient deep learning framework containing two subnetworks for simultaneously segmenting FAZ and RV from en-face OCTA images, named FARGO. For FAZ, we use RV segmentation as an auxiliary task, which may provide supplementary information especially for low-contrast and low-quality OCTA images. A ResNeSt based encoder with split attention and ImageNet pretraining is employed for FAZ segmentation. For RV, we introduce a coarse-to-fine cascaded network composed of a main segmentation model and several small ones for progressive refining. Spatial attention and channel attention modules are utilized for adaptively integrating local features with global dependencies. Through extensive experiments, FARGO is found to yield outstanding segmentation results for both FAZ and RV on the OCTA-500 dataset, performing even better than methods that utilize 3D OCTA volume as an extra input.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20213910959258
EI主题词
Deep learning ; Diagnosis ; Image enhancement ; Image segmentation ; Medical computing ; Medical imaging ; Ophthalmology
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Computer Applications:723.5 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85115875301
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253568
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Peng,Linkai,Lin,Li,Cheng,Pujin,et al. FARGO: A Joint Framework for FAZ and RV Segmentation from OCTA Images[C],2021:42-51.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng,Linkai]的文章
[Lin,Li]的文章
[Cheng,Pujin]的文章
百度学术
百度学术中相似的文章
[Peng,Linkai]的文章
[Lin,Li]的文章
[Cheng,Pujin]的文章
必应学术
必应学术中相似的文章
[Peng,Linkai]的文章
[Lin,Li]的文章
[Cheng,Pujin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。