中文版 | English
题名

Juvenile Refractive Power Prediction Based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network

作者
通讯作者Higashita,Risa
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12970 LNCS
页码
92-100
摘要
Traditional cycloplegic refractive power detection with specific lotions dropping may cause side-effects, e.g., the pupillary retraction disorder, on juvenile eyes. In this paper, we develop a novel neural network algorithm to predict the refractive power, which is assessed by the Spherical Equivalent (SE), using real-world clinical non-cycloplegic refraction records. Participants underwent a comprehensive ophthalmic examination to obtain several related parameters, including sphere degree, cylinder degree, axial length, flat keratometry, and steep keratometry. Based on these quantitative biomedical parameters, a novel neural network model is trained to predict the SE. On the whole age test dataset, the domain knowledge embedding network (DKE-Net) prediction accuracies of SE achieve 59.82% (between ± 0.5 D ), 86.85% (between ± 1 D ), 95.54% (between ± 1.5 D ), and 98.57% (between ± 2 D ), which demonstrate superior performance over conventional machine learning algorithms on real-world clinical electronic refraction records. Also, the SE prediction accuracies on the excluded examples that are disqualified for model training, are 2.16% (between ± 0.5 D ), 3.76% (between ± 1 D ), 6.15% (between ± 1.5 D ), and 8.78% (between ± 2 D ). This is the leading application to predict refraction power using a neural network and domain knowledge, to the best of our knowledge, with a satisfactory accuracy level. Moreover, the model can also assist in diagnosing some specific kinds of ocular disorders.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20213910959244
EI主题词
Bioinformatics ; Diagnosis ; Embeddings ; Forecasting ; Machine learning ; Medical computing ; Neural networks ; Refraction ; Statistical tests
EI分类号
Biomedical Engineering:461.1 ; Medicine and Pharmacology:461.6 ; Bioinformatics:461.8.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85115861198
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253572
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.University of Technology Sydney,Sydney,Australia
3.Tomey Corporation,Nagoya,Japan
4.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Beijing,China
5.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China
6.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Yang,Higashita,Risa,Xu,Yanwu,et al. Juvenile Refractive Power Prediction Based on Corneal Curvature and Axial Length via a Domain Knowledge Embedding Network[C],2021:92-100.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yang]的文章
[Higashita,Risa]的文章
[Xu,Yanwu]的文章
百度学术
百度学术中相似的文章
[Zhang,Yang]的文章
[Higashita,Risa]的文章
[Xu,Yanwu]的文章
必应学术
必应学术中相似的文章
[Zhang,Yang]的文章
[Higashita,Risa]的文章
[Xu,Yanwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。