中文版 | English
题名

Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19

作者
通讯作者Song,Xuan
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12978
页码
319-334
摘要
Modeling and predicting human mobility are of great significance to various application scenarios such as intelligent transportation system, crowd management, and disaster response. In particular, in a severe pandemic situation like COVID-19, human movements among different regions are taken as the most important point for understanding and forecasting the epidemic spread in a country. Thus, in this study, we collect big human GPS trajectory data covering the total 47 prefectures of Japan and model the daily human movements between each pair of prefectures with time-series Origin-Destination (OD) matrix. Then, given the historical observations from past days, we predict the countrywide OD matrices for the future one or more weeks by proposing a novel deep learning model called Origin-Destination Convolutional Recurrent Network (ODCRN). It integrates the recurrent and 2-dimensional graph convolutional components to deal with the highly complex spatiotemporal dependencies in sequential OD matrices. Experiment results over the entire COVID-19 period demonstrate the superiority of our proposed methodology over existing OD prediction models. Last, we apply the predicted countrywide OD matrices to the SEIR model, one of the most classic and widely used epidemic simulation model, to forecast the COVID-19 infection numbers for the entire Japan. The simulation results also demonstrate the high reliability and applicability of our countrywide OD prediction model for a pandemic scenario like COVID-19.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000713055600020
EI入藏号
20213910947934
EI主题词
Convolution ; Intelligent systems ; Matrix algebra ; Recurrent neural networks
EI分类号
Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Algebra:921.1
Scopus记录号
2-s2.0-85115719006
来源库
Scopus
引用统计
被引频次[WOS]:10
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253596
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.The University of Tokyo,Tokyo,Japan
2.LocationMind Inc.,Tokyo,Japan
3.BlogWatcher Inc.,Tokyo,Japan
4.Southern University of Science and Technology,Shenzhen,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Jiang,Renhe,Wang,Zhaonan,Cai,Zekun,et al. Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19[C],2021:319-334.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Renhe]的文章
[Wang,Zhaonan]的文章
[Cai,Zekun]的文章
百度学术
百度学术中相似的文章
[Jiang,Renhe]的文章
[Wang,Zhaonan]的文章
[Cai,Zekun]的文章
必应学术
必应学术中相似的文章
[Jiang,Renhe]的文章
[Wang,Zhaonan]的文章
[Cai,Zekun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。