题名 | Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19 |
作者 | |
通讯作者 | Song,Xuan |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12978
|
页码 | 319-334
|
摘要 | Modeling and predicting human mobility are of great significance to various application scenarios such as intelligent transportation system, crowd management, and disaster response. In particular, in a severe pandemic situation like COVID-19, human movements among different regions are taken as the most important point for understanding and forecasting the epidemic spread in a country. Thus, in this study, we collect big human GPS trajectory data covering the total 47 prefectures of Japan and model the daily human movements between each pair of prefectures with time-series Origin-Destination (OD) matrix. Then, given the historical observations from past days, we predict the countrywide OD matrices for the future one or more weeks by proposing a novel deep learning model called Origin-Destination Convolutional Recurrent Network (ODCRN). It integrates the recurrent and 2-dimensional graph convolutional components to deal with the highly complex spatiotemporal dependencies in sequential OD matrices. Experiment results over the entire COVID-19 period demonstrate the superiority of our proposed methodology over existing OD prediction models. Last, we apply the predicted countrywide OD matrices to the SEIR model, one of the most classic and widely used epidemic simulation model, to forecast the COVID-19 infection numbers for the entire Japan. The simulation results also demonstrate the high reliability and applicability of our countrywide OD prediction model for a pandemic scenario like COVID-19. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000713055600020
|
EI入藏号 | 20213910947934
|
EI主题词 | Convolution
; Intelligent systems
; Matrix algebra
; Recurrent neural networks
|
EI分类号 | Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Algebra:921.1
|
Scopus记录号 | 2-s2.0-85115719006
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253596 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.The University of Tokyo,Tokyo,Japan 2.LocationMind Inc.,Tokyo,Japan 3.BlogWatcher Inc.,Tokyo,Japan 4.Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Jiang,Renhe,Wang,Zhaonan,Cai,Zekun,et al. Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19[C],2021:319-334.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论