题名 | Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection |
作者 | |
通讯作者 | Yao,Xin |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12977
|
页码 | 795-810
|
摘要 | Out-of-Distribution (OoD) detectors based on AutoEncoder (AE) rely on an underlying assumption that an AE network cannot reconstruct OoD data as good as in-distribution (ID) data when it is constructed based on ID data only. However, this assumption may be violated in practice, resulting in a degradation in detection performance. Therefore, alleviating the factors violating this assumption can potentially improve the robustness of OoD performance. Our empirical studies also show that image complexity can be another factor hindering detection performance for AE-based detectors. To cater for these issues, we propose two OoD detectors LAMAE and LAMAE+. Both can be trained without the availability of any OoD-related data. The key idea is to regularize the AE network architecture with a classifier and a label-assisted memory to confine the reconstruction of OoD data while retaining the reconstruction ability for ID data. We also adjust the reconstruction error by taking image complexity into consideration. Experimental studies show that the proposed OoD detectors can perform well on a wider range of OoD scenarios. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000713413200048
|
EI入藏号 | 20213910949555
|
EI主题词 | Complex networks
; Network architecture
|
EI分类号 | Computer Systems and Equipment:722
|
Scopus记录号 | 2-s2.0-85115709907
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253597 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology (SUSTech),Shenzhen,China 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,China 3.CERCIA,School of Computer Science,University of Birmingham,Birmingham,United Kingdom 4.RAMS Reliability Technology Laboratory,Huawei Technology Co. Ltd.,Shenzhen,China 5.TTE-DE RAMS Laboratory,Huawei Technology Co. Ltd.,Munich,Germany |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Zhang,Shuyi,Pan,Chao,Song,Liyan,et al. Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection[C],2021:795-810.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论