中文版 | English
题名

Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection

作者
通讯作者Yao,Xin
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12977
页码
795-810
摘要
Out-of-Distribution (OoD) detectors based on AutoEncoder (AE) rely on an underlying assumption that an AE network cannot reconstruct OoD data as good as in-distribution (ID) data when it is constructed based on ID data only. However, this assumption may be violated in practice, resulting in a degradation in detection performance. Therefore, alleviating the factors violating this assumption can potentially improve the robustness of OoD performance. Our empirical studies also show that image complexity can be another factor hindering detection performance for AE-based detectors. To cater for these issues, we propose two OoD detectors LAMAE and LAMAE+. Both can be trained without the availability of any OoD-related data. The key idea is to regularize the AE network architecture with a classifier and a label-assisted memory to confine the reconstruction of OoD data while retaining the reconstruction ability for ID data. We also adjust the reconstruction error by taking image complexity into consideration. Experimental studies show that the proposed OoD detectors can perform well on a wider range of OoD scenarios.
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Imaging Science & Photographic Technology
WOS记录号
WOS:000713413200048
EI入藏号
20213910949555
EI主题词
Complex networks ; Network architecture
EI分类号
Computer Systems and Equipment:722
Scopus记录号
2-s2.0-85115709907
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253597
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology (SUSTech),Shenzhen,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,China
3.CERCIA,School of Computer Science,University of Birmingham,Birmingham,United Kingdom
4.RAMS Reliability Technology Laboratory,Huawei Technology Co. Ltd.,Shenzhen,China
5.TTE-DE RAMS Laboratory,Huawei Technology Co. Ltd.,Munich,Germany
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Zhang,Shuyi,Pan,Chao,Song,Liyan,et al. Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection[C],2021:795-810.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Shuyi]的文章
[Pan,Chao]的文章
[Song,Liyan]的文章
百度学术
百度学术中相似的文章
[Zhang,Shuyi]的文章
[Pan,Chao]的文章
[Song,Liyan]的文章
必应学术
必应学术中相似的文章
[Zhang,Shuyi]的文章
[Pan,Chao]的文章
[Song,Liyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。