题名 | Fairer Machine Learning Through Multi-objective Evolutionary Learning |
作者 | |
通讯作者 | Yao,Xin |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12894
|
页码 | 111-123
|
摘要 | Dilemma between model accuracy and fairness in machine learning models has been shown theoretically and empirically. So far, dozens of fairness measures have been proposed, among which incompatibility and complementarity exist. However, no fairness measure has been universally accepted as the single fairest measure. No one has considered multiple fairness measures simultaneously. In this paper, we propose a multi-objective evolutionary learning framework for mitigating unfairness caused by considering a single measure only, in which a multi-objective evolutionary algorithm is used during training to balance accuracy and multiple fairness measures simultaneously. In our case study, besides the model accuracy, two fairness measures that are conflicting to each other are selected. Empirical results show that our proposed multi-objective evolutionary learning framework is able to find Pareto-front models efficiently and provide fairer machine learning models that consider multiple fairness measures. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000711927100010
|
EI入藏号 | 20213910947905
|
EI主题词 | Evolutionary algorithms
|
Scopus记录号 | 2-s2.0-85115673628
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253601 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous System,Southern University of Science and Technology (SUSTech),Shenzhen,China 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,China 3.Trustworthiness Theory Research Center,Huawei Technologies Co.,Ltd.,Shenzhen,China |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang,Qingquan,Liu,Jialin,Zhang,Zeqi,et al. Fairer Machine Learning Through Multi-objective Evolutionary Learning[C],2021:111-123.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论