题名 | Spatial-Temporal Traffic Data Imputation via Graph Attention Convolutional Network |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | Proc. International Conference on Artificial Neural Networks
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12891
|
页码 | 241-252
|
会议日期 | Sept. 2021
|
会议地点 | Bratislava, Slovakia
|
摘要 | High-quality traffic data is crucial for intelligent transportation system and its data-driven applications. However, data missing is common in collecting real-world traffic datasets due to various factors. Thus, imputing missing values by extracting traffic characteristics becomes an essential task. By using conventional convolutional neural network layers or focusing on standalone road sections, existing imputation methods cannot model the non-Euclidean spatial correlations of complex traffic networks. To address this challenge, we propose a graph attention convolutional network (GACN), a novel model for traffic data imputation. Specifically, the model follows an encoder-decoder structure and incorporates graph attention mechanism to learn spatial correlation of the traffic data collected by adjacent sensors on traffic graph. Temporal convolutional layers are stacked to extract relations in time-series after graph attention layers. Through comprehensive case studies on the dataset from the Caltrans performance measurement system (PeMS), we demonstrate that the proposed GACN consistently outperforms other baselines and has steady performance in extreme missing rate scenarios. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000711965200020
|
EI入藏号 | 20213910941679
|
EI主题词 | Convolutional Neural Networks
; Intelligent Systems
; Multilayer Neural Networks
; Network Layers
|
EI分类号 | Information Theory And Signal Processing:716.1
; Computer Software, Data HAndling And Applications:723
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85115446292
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:24
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253607 |
专题 | 工学院_计算机科学与工程系 前沿与交叉科学研究院 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ye,Yongchao,Zhang,Shiyao,Yu,James J.Q.. Spatial-Temporal Traffic Data Imputation via Graph Attention Convolutional Network[C],2021:241-252.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Spatial-Temporal-Tra(2520KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论