题名 | TINet: Multi-dimensional Traffic Data Imputation via Transformer Network |
作者 | |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12891
|
页码 | 306-317
|
摘要 | Missing traffic data problem has a significant negative impact for data-driven applications in Intelligent Transportation Systems (ITS). However, existing models mainly focus on the imputation results under Missing Completely At Random (MCAR) task, and there is a considerable difference between MCAR with the situation encountered in real life. Furthermore, some existing state-of-the-art models can be vulnerable when dealing with other imputation tasks like block miss imputation. In this paper, we propose a novel deep learning model TINet for missing traffic data imputation problems. TINet uses the self-attention mechanism to dynamically adjust the weight for each entries in the input data. This architecture effectively avoids the limitation of the Fully Connected Network (FCN). Furthermore, TINet uses multi-dimensional embedding for representing data’s spatial-temporal positional information, which alleviates the computation and memory requirements of attention-based model for multi-dimentional data. We evaluate TINet with other baselines on two real-world datasets. Different from the previous work that only employs MCAR for testing, our experiment also tested the performance of models on the Block Miss At Random (BMAR) tasks. The results show that TINet outperforms baseline imputation models for both MCAR and BMAR tasks with different missing rates. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000711965200025
|
EI入藏号 | 20213910941674
|
EI主题词 | Deep learning
; Intelligent systems
; Intelligent vehicle highway systems
|
EI分类号 | Highway Systems:406.1
; Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85115445948
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253608 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Song,Xiaozhuang,Ye,Yongchao,Yu,James J.Q.. TINet: Multi-dimensional Traffic Data Imputation via Transformer Network[C],2021:306-317.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论