中文版 | English
题名

TINet: Multi-dimensional Traffic Data Imputation via Transformer Network

作者
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12891
页码
306-317
摘要
Missing traffic data problem has a significant negative impact for data-driven applications in Intelligent Transportation Systems (ITS). However, existing models mainly focus on the imputation results under Missing Completely At Random (MCAR) task, and there is a considerable difference between MCAR with the situation encountered in real life. Furthermore, some existing state-of-the-art models can be vulnerable when dealing with other imputation tasks like block miss imputation. In this paper, we propose a novel deep learning model TINet for missing traffic data imputation problems. TINet uses the self-attention mechanism to dynamically adjust the weight for each entries in the input data. This architecture effectively avoids the limitation of the Fully Connected Network (FCN). Furthermore, TINet uses multi-dimensional embedding for representing data’s spatial-temporal positional information, which alleviates the computation and memory requirements of attention-based model for multi-dimentional data. We evaluate TINet with other baselines on two real-world datasets. Different from the previous work that only employs MCAR for testing, our experiment also tested the performance of models on the Block Miss At Random (BMAR) tasks. The results show that TINet outperforms baseline imputation models for both MCAR and BMAR tasks with different missing rates.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000711965200025
EI入藏号
20213910941674
EI主题词
Deep learning ; Intelligent systems ; Intelligent vehicle highway systems
EI分类号
Highway Systems:406.1 ; Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85115445948
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253608
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Song,Xiaozhuang,Ye,Yongchao,Yu,James J.Q.. TINet: Multi-dimensional Traffic Data Imputation via Transformer Network[C],2021:306-317.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song,Xiaozhuang]的文章
[Ye,Yongchao]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Song,Xiaozhuang]的文章
[Ye,Yongchao]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Song,Xiaozhuang]的文章
[Ye,Yongchao]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。