中文版 | English
题名

TSTNet: A Sequence to Sequence Transformer Network for Spatial-Temporal Traffic Prediction

作者
通讯作者Song,Xiaozhuang
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12891
页码
343-354
摘要
Making accurate traffic forecasting is of great importance in smart city-related researches. However, as the traffic features like traffic speed have a complex spatial-temporal characteristics, how to build an accurate traffic prediction model is still an open challenge. In this work, we propose TSTNet, a Sequence to Sequence (Seq2Seq) spatial-temporal traffic prediction model. TSTNet adopts Graph Attention Network (GAT), which can learn the spatial feature aggregation, to build spatial dependency. For temporal dependency, TSTNet applies a Seq2Seq Transformer structure to establish temporal dependency. As a GAT layer’s operation only aggregate the attribute information for neighbor nodes, it does not involve any spatial positional information. Similarly, if we apply the Transformer model on sequence learning tasks, the Transformer model also does not involve any temporal positional information as it does not know the exact time slot of different inputs. To solve the above problems, TSTNet implements a spatial-temporal embedding method to obtain the spatial-temporal positional representation for each input data. We evaluate TSTNet on traffic speed prediction tasks with other baselines upon two real-world datasets, the results show that TSTNet outperforms all the baseline models.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000711965200028
EI入藏号
20213910941671
EI主题词
Speed ; Traffic control
Scopus记录号
2-s2.0-85115444206
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253610
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Shenzhen,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,China
3.University of Leeds,Leeds,United Kingdom
4.University of Technology Sydney,Sydney,Australia
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Song,Xiaozhuang,Wu,Ying,Zhang,Chenhan. TSTNet: A Sequence to Sequence Transformer Network for Spatial-Temporal Traffic Prediction[C],2021:343-354.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song,Xiaozhuang]的文章
[Wu,Ying]的文章
[Zhang,Chenhan]的文章
百度学术
百度学术中相似的文章
[Song,Xiaozhuang]的文章
[Wu,Ying]的文章
[Zhang,Chenhan]的文章
必应学术
必应学术中相似的文章
[Song,Xiaozhuang]的文章
[Wu,Ying]的文章
[Zhang,Chenhan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。