题名 | TSTNet: A Sequence to Sequence Transformer Network for Spatial-Temporal Traffic Prediction |
作者 | |
通讯作者 | Song,Xiaozhuang |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12891
|
页码 | 343-354
|
摘要 | Making accurate traffic forecasting is of great importance in smart city-related researches. However, as the traffic features like traffic speed have a complex spatial-temporal characteristics, how to build an accurate traffic prediction model is still an open challenge. In this work, we propose TSTNet, a Sequence to Sequence (Seq2Seq) spatial-temporal traffic prediction model. TSTNet adopts Graph Attention Network (GAT), which can learn the spatial feature aggregation, to build spatial dependency. For temporal dependency, TSTNet applies a Seq2Seq Transformer structure to establish temporal dependency. As a GAT layer’s operation only aggregate the attribute information for neighbor nodes, it does not involve any spatial positional information. Similarly, if we apply the Transformer model on sequence learning tasks, the Transformer model also does not involve any temporal positional information as it does not know the exact time slot of different inputs. To solve the above problems, TSTNet implements a spatial-temporal embedding method to obtain the spatial-temporal positional representation for each input data. We evaluate TSTNet on traffic speed prediction tasks with other baselines upon two real-world datasets, the results show that TSTNet outperforms all the baseline models. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000711965200028
|
EI入藏号 | 20213910941671
|
EI主题词 | Speed
; Traffic control
|
Scopus记录号 | 2-s2.0-85115444206
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253610 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,China 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Shenzhen,China 3.University of Leeds,Leeds,United Kingdom 4.University of Technology Sydney,Sydney,Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Song,Xiaozhuang,Wu,Ying,Zhang,Chenhan. TSTNet: A Sequence to Sequence Transformer Network for Spatial-Temporal Traffic Prediction[C],2021:343-354.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论