中文版 | English
题名

Deep Multi-task Augmented Feature Learning via Hierarchical Graph Neural Network

作者
通讯作者Zhang,Yu
DOI
发表日期
2021
会议名称
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12975 LNAI
页码
538-553
会议日期
SEP 13-17, 2021
会议地点
null,null,ELECTR NETWORK
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Deep multi-task learning attracts much attention in recent years as it achieves good performance in many applications. Feature learning is important to deep multi-task learning for sharing common information among tasks. In this paper, we propose a Hierarchical Graph Neural Network (HGNN) to learn augmented features for deep multi-task learning. The HGNN consists of two-level graph neural networks. In the low level, an intra-task graph neural network is responsible of learning a powerful representation for each data point in a task by aggregating its neighbors. Based on the learned representation, a task embedding can be generated for each task in a similar way to max pooling. In the second level, an inter-task graph neural network updates task embeddings of all the tasks based on the attention mechanism to model task relations. Then the task embedding of one task is used to augment the feature representation of data points in this task. Moreover, for classification tasks, an inter-class graph neural network is introduced to conduct similar operations on a finer granularity, i.e., the class level, to generate class embeddings for each class in all the tasks using class embeddings to augment the feature representation. The proposed feature augmentation strategy can be used in many deep multi-task learning models. Experiments on real-world datasets show the significant performance improvement when using this strategy.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
NSFC[62076118]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:000712017700033
EI入藏号
20213910941723
EI主题词
Deep learning ; Embeddings
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85115443090
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253612
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Peng Cheng Laboratory,Shenzhen,China
3.Committee on Computational and Applied Mathematics,University of Chicago,Chicago,United States
4.Game AI Group,Queen Mary University of London,London,United Kingdom
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Guo,Pengxin,Deng,Chang,Xu,Linjie,et al. Deep Multi-task Augmented Feature Learning via Hierarchical Graph Neural Network[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:538-553.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo,Pengxin]的文章
[Deng,Chang]的文章
[Xu,Linjie]的文章
百度学术
百度学术中相似的文章
[Guo,Pengxin]的文章
[Deng,Chang]的文章
[Xu,Linjie]的文章
必应学术
必应学术中相似的文章
[Guo,Pengxin]的文章
[Deng,Chang]的文章
[Xu,Linjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。