题名 | Deep Multi-task Augmented Feature Learning via Hierarchical Graph Neural Network |
作者 | |
通讯作者 | Zhang,Yu |
DOI | |
发表日期 | 2021
|
会议名称 | European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12975 LNAI
|
页码 | 538-553
|
会议日期 | SEP 13-17, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Deep multi-task learning attracts much attention in recent years as it achieves good performance in many applications. Feature learning is important to deep multi-task learning for sharing common information among tasks. In this paper, we propose a Hierarchical Graph Neural Network (HGNN) to learn augmented features for deep multi-task learning. The HGNN consists of two-level graph neural networks. In the low level, an intra-task graph neural network is responsible of learning a powerful representation for each data point in a task by aggregating its neighbors. Based on the learned representation, a task embedding can be generated for each task in a similar way to max pooling. In the second level, an inter-task graph neural network updates task embeddings of all the tasks based on the attention mechanism to model task relations. Then the task embedding of one task is used to augment the feature representation of data points in this task. Moreover, for classification tasks, an inter-class graph neural network is introduced to conduct similar operations on a finer granularity, i.e., the class level, to generate class embeddings for each class in all the tasks using class embeddings to augment the feature representation. The proposed feature augmentation strategy can be used in many deep multi-task learning models. Experiments on real-world datasets show the significant performance improvement when using this strategy. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | NSFC[62076118]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:000712017700033
|
EI入藏号 | 20213910941723
|
EI主题词 | Deep learning
; Embeddings
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85115443090
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253612 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Peng Cheng Laboratory,Shenzhen,China 3.Committee on Computational and Applied Mathematics,University of Chicago,Chicago,United States 4.Game AI Group,Queen Mary University of London,London,United Kingdom |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Guo,Pengxin,Deng,Chang,Xu,Linjie,et al. Deep Multi-task Augmented Feature Learning via Hierarchical Graph Neural Network[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:538-553.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论