题名 | Application of fractional differential equation to interpret the dynamics of dissolved heavy-metal uptake in streams at a wide range of scales |
作者 | |
通讯作者 | Zhang, Yong |
发表日期 | 2019-08-06
|
DOI | |
发表期刊 | |
ISSN | 2190-5444
|
卷号 | 134期号:8 |
摘要 | Fractional differential equations (FDEs) provide promising models to simulate non-Fickian transport in heterogeneous systems such as geological media, but the FDEs have seldom been used to model reactive transport across a wide range of spatial scales. To fill the knowledge gap, this study proposed a fractional-order advection-dispersion-reaction (fADR) model to quantify the dynamics of dissolved heavy metals, such as manganese (Mn), moving in streams with oxidative precipitation and sorption in storage zones. The fADR model was applied to fit the Mn concentration profiles documented in the literature at the hyporheic flow path scale (0.30m in length), the reach scale (100-3000m), and the basin scale ( similar to 20000 m) at Pinal Creek, Arizona. Numerical results showed that compared with standard transport models such as the OTIS model and the single-rate mass transfer model, the fADR model can better capture the observed plumes at all scales. This is because the space fractional-diffusive term in the fADR model can capture super-diffusive jumps of dissolved metals driven by turbulence at the bedform scale and flooding in a decade-long time scale. Meanwhile, the time fractional derivative term in the fADR model describes complex solute retention due to multiple-rate mass exchange between the mobile zone (stream or the hyporheic flux) and various storage regimes with different properties (such as streambed sediments and stagnant portions in the hyporheic zone). This does not rely on the equilibrium chemistry condition for solutes in storage zones assumed by standard hyporheic-exchange models. In addition, the first-order reaction in the fADR model can efficiently characterize the mass decline of Mn downstream resulting from enhanced Mn oxidation (such as oxidation of MN(II) to +3 or +4 oxidation states) due to the input of streamflow with increased pH and dissolved oxygen and/or groundwater recharge with high dissolved metals into the hyporheic zone. The decoupled super-diffusion and retention for Mn can exhibit scale-dependent behaviors due to the evolution of driving mechanisms, which can be characterized by the parsimonious, phenomenological FDE by adjusting the indexes. Therefore, the application of FDEs helps us to interpret the physical and geochemical processes in streams across scales. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[41330632]
; National Natural Science Foundation of China[41628202]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000479155600001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/25363 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | 1.Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA 2.Hohai Univ, Coll Mech & Mat, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China 3.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China 4.Nanjing Normal Univ, Guangdong Prov Key Lab Soil & Groundwater Pollut, Sch Environm, Nanjing 210023, Jiangsu, Peoples R China 5.Nanjing Normal Univ, Jiangsu Prov Key Lab Mat Cycling & Pollut Control, Jiangsu Engn Lab Water & Soil Ecoremediat, Sch Environm, Nanjing 210023, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 |
Puckett, Mary Hastings,Zhang, Yong,Lu, Bingqing,et al. Application of fractional differential equation to interpret the dynamics of dissolved heavy-metal uptake in streams at a wide range of scales[J]. European Physical Journal Plus,2019,134(8).
|
APA |
Puckett, Mary Hastings.,Zhang, Yong.,Lu, Bingqing.,Lu, YueHan.,Sun, HongGuang.,...&Wei, Wei.(2019).Application of fractional differential equation to interpret the dynamics of dissolved heavy-metal uptake in streams at a wide range of scales.European Physical Journal Plus,134(8).
|
MLA |
Puckett, Mary Hastings,et al."Application of fractional differential equation to interpret the dynamics of dissolved heavy-metal uptake in streams at a wide range of scales".European Physical Journal Plus 134.8(2019).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论