中文版 | English
题名

Towards Automated Fatigue Assessment using Wearable Sensing and Mixed-Effects Models

作者
DOI
发表日期
2021-09-21
会议名称
ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp) / ACM International Symposium on Wearable Computers (ISWC)
ISSN
1550-4816
会议录名称
页码
129-131
会议日期
SEP 21-26, 2021
会议地点
null,null,ELECTR NETWORK
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要

Fatigue is a broad, multifactorial concept that includes the subjective perception of reduced physical and mental energy levels. It is also one of the key factors that strongly affect patients' health-related quality of life. To date, most fatigue assessment methods were based on self-reporting, which may suffer from many factors such as recall bias. To address this issue, in this work, we recorded multi-modal physiological data (including ECG, accelerometer, skin temperature and respiratory rate, as well as demographic information such as age, BMI) in free-living environments, and developed automated fatigue assessment models. Specifically, we extracted features from each modality, and employed the random forest-based mixed-effects models, which can take advantage of the demographic information for improved performance. We conducted experiments on our collected dataset, and very promising preliminary results were achieved. Our results suggested ECG played an important role in the fatigue assessment tasks.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Materials Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Materials Science, Multidisciplinary
WOS记录号
WOS:000769652100025
EI入藏号
20214010969254
EI主题词
Decision trees ; Physiological models ; Population statistics ; Wearable sensors
EI分类号
Medicine and Pharmacology:461.6 ; Electricity: Basic Concepts and Phenomena:701.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
Scopus记录号
2-s2.0-85115951493
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253658
专题南方科技大学
理学院_统计与数据科学系
作者单位
1.Newcastle University,United Kingdom
2.Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Bai,Yang,Guan,Yu,Shi,Jian Qing,et al. Towards Automated Fatigue Assessment using Wearable Sensing and Mixed-Effects Models[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:129-131.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai,Yang]的文章
[Guan,Yu]的文章
[Shi,Jian Qing]的文章
百度学术
百度学术中相似的文章
[Bai,Yang]的文章
[Guan,Yu]的文章
[Shi,Jian Qing]的文章
必应学术
必应学术中相似的文章
[Bai,Yang]的文章
[Guan,Yu]的文章
[Shi,Jian Qing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。