中文版 | English
题名

Field master equation theory of the self-excited Hawkes process

作者
发表日期
2020-09-21
DOI
发表期刊
ISSN
2643-1564
卷号2期号:3
摘要
A field theoretical framework is developed for the Hawkes self-excited point process with arbitrary memory kernels by embedding the original non-Markovian one-dimensional dynamics onto a Markovian infinite-dimensional one. The corresponding Langevin dynamics of the field variables is given by stochastic partial differential equations that are Markovian. This is in contrast to the Hawkes process, which is non-Markovian (in general) by construction as a result of its (long) memory kernel. We derive the exact solutions of the Lagrange-Charpit equations for the hyperbolic master equations in the Laplace representation in the steady state, close to the critical point of the Hawkes process. The critical condition of the original Hawkes process is found to correspond to a transcritical bifurcation in the Lagrange-Charpit equations. We predict a power law scaling of the probability density function (PDF) of the intensities in an intermediate asymptotic regime, which crosses over to an asymptotic exponential function beyond a characteristic intensity that diverges as the critical condition is approached. We also discuss the formal relationship between quantum field theories and our formulation. Our field theoretical framework provides a way to tackle complex generalization of the Hawkes process, such as nonlinear Hawkes processes previously proposed to describe the multifractal properties of earthquake seismicity and of financial volatility.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20204809556138
EI主题词
Exponential functions ; Earthquakes ; Stochastic systems ; Lagrange multipliers
EI分类号
Seismology:484 ; Control Systems:731.1 ; Mathematics:921 ; Probability Theory:922.1 ; Systems Science:961
Scopus记录号
2-s2.0-85096546039
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253659
专题前沿与交叉科学研究院
前沿与交叉科学研究院_风险分析预测与管控研究院
作者单位
1.Faculty of Engineering,Information and Systems,University of Tsukuba,Tennodai, Tsukuba,Ibaraki,305-8573,Japan
2.ETH Zurich,Department of Management,Technology,and Economics,Zurich,8092,Switzerland
3.Tokyo Tech World Research Hub Initiative,Institute of Innovative Research,Tokyo Institute of Technology,Tokyo,152-8550,Japan
4.Institute of Risk Analysis Prediction,and Management,Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Kanazawa,Kiyoshi,Sornette,Didier. Field master equation theory of the self-excited Hawkes process[J]. Physical Review Research,2020,2(3).
APA
Kanazawa,Kiyoshi,&Sornette,Didier.(2020).Field master equation theory of the self-excited Hawkes process.Physical Review Research,2(3).
MLA
Kanazawa,Kiyoshi,et al."Field master equation theory of the self-excited Hawkes process".Physical Review Research 2.3(2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kanazawa,Kiyoshi]的文章
[Sornette,Didier]的文章
百度学术
百度学术中相似的文章
[Kanazawa,Kiyoshi]的文章
[Sornette,Didier]的文章
必应学术
必应学术中相似的文章
[Kanazawa,Kiyoshi]的文章
[Sornette,Didier]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。