中文版 | English
题名

Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models

作者
通讯作者No, Kyoung Tai; Wang, Guanyu
发表日期
2021-09-24
DOI
发表期刊
EISSN
2589-0042
卷号24期号:9
摘要
Early quantitative structure-activity relationship (QSAR) technologies have unsatisfactory versatility and accuracy in fields such as drug discovery because they are based on traditional machine learning and interpretive expert features. The development of Big Data and deep learning technologies significantly improve the processing of unstructured data and unleash the great potential of QSAR. Here we discuss the integration of wet experiments (which provide experimental data and reliable verification), molecular dynamics simulation (which provides mechanistic interpretation at the atomic/molecular levels), and machine learning (including deep learning) techniques to improve QSAR models. We first review the history of traditional QSAR and point out its problems. We then propose a better QSAR model characterized by a new iterative framework to integrate machine learning with disparate data input. Finally, we discuss the application of QSAR and machine learning to many practical research fields, including drug development and clinical trials.
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[61773196,32070681] ; Guangdong Provincial Special Projects[2020KZDZX1182] ; Guangdong Provincial Key Laboratory Funds["2019B030301001","2017B030301018"] ; Shenzhen Research Funds[JCYJ20170817104740861] ; Shenzhen Peacock Plan[KQTD2016053117035204]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:000698069100111
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:67
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253960
专题生命科学学院_生物系
生命科学学院
作者单位
1.Yonsei Univ, Interdisciplinary Grad Program Integrat Biotechno, Incheon 21983, South Korea
2.Southern Univ Sci & Technol, Sch Life Sci, Dept Biol, 1088 Xueyuan Ave, Shenzhen 518055, Guangdong, Peoples R China
3.Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China
4.Guangdong Prov Key Lab Cell Microenvironm & Dis R, Shenzhen 518055, Guangdong, Peoples R China
5.Shanghai Rural Commercial Bank Co Ltd, Shanghai 200002, Peoples R China
6.City Univ Hong Kong, Dept Phys, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
7.Chinese Univ Hong Kong, Sch Life & Hlth Sci, Shenzhen 518172, Peoples R China
8.Chinese Univ Hong Kong, Warshel Inst Computat Biol, Shenzhen 518172, Peoples R China
9.Yonsei Univ, Coll Life Sci & Biotechnol, Biotechnol, Seoul 03722, South Korea
第一作者单位生物系;  生命科学学院
通讯作者单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Mao, Jiashun,Akhtar, Javed,Zhang, Xiao,et al. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models[J]. ISCIENCE,2021,24(9).
APA
Mao, Jiashun.,Akhtar, Javed.,Zhang, Xiao.,Sun, Liang.,Guan, Shenghui.,...&Wang, Guanyu.(2021).Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models.ISCIENCE,24(9).
MLA
Mao, Jiashun,et al."Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models".ISCIENCE 24.9(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mao, Jiashun]的文章
[Akhtar, Javed]的文章
[Zhang, Xiao]的文章
百度学术
百度学术中相似的文章
[Mao, Jiashun]的文章
[Akhtar, Javed]的文章
[Zhang, Xiao]的文章
必应学术
必应学术中相似的文章
[Mao, Jiashun]的文章
[Akhtar, Javed]的文章
[Zhang, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。