题名 | Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models |
作者 | |
通讯作者 | No, Kyoung Tai; Wang, Guanyu |
发表日期 | 2021-09-24
|
DOI | |
发表期刊 | |
EISSN | 2589-0042
|
卷号 | 24期号:9 |
摘要 | Early quantitative structure-activity relationship (QSAR) technologies have unsatisfactory versatility and accuracy in fields such as drug discovery because they are based on traditional machine learning and interpretive expert features. The development of Big Data and deep learning technologies significantly improve the processing of unstructured data and unleash the great potential of QSAR. Here we discuss the integration of wet experiments (which provide experimental data and reliable verification), molecular dynamics simulation (which provides mechanistic interpretation at the atomic/molecular levels), and machine learning (including deep learning) techniques to improve QSAR models. We first review the history of traditional QSAR and point out its problems. We then propose a better QSAR model characterized by a new iterative framework to integrate machine learning with disparate data input. Finally, we discuss the application of QSAR and machine learning to many practical research fields, including drug development and clinical trials. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[61773196,32070681]
; Guangdong Provincial Special Projects[2020KZDZX1182]
; Guangdong Provincial Key Laboratory Funds["2019B030301001","2017B030301018"]
; Shenzhen Research Funds[JCYJ20170817104740861]
; Shenzhen Peacock Plan[KQTD2016053117035204]
|
WOS研究方向 | Science & Technology - Other Topics
|
WOS类目 | Multidisciplinary Sciences
|
WOS记录号 | WOS:000698069100111
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:67
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253960 |
专题 | 生命科学学院_生物系 生命科学学院 |
作者单位 | 1.Yonsei Univ, Interdisciplinary Grad Program Integrat Biotechno, Incheon 21983, South Korea 2.Southern Univ Sci & Technol, Sch Life Sci, Dept Biol, 1088 Xueyuan Ave, Shenzhen 518055, Guangdong, Peoples R China 3.Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China 4.Guangdong Prov Key Lab Cell Microenvironm & Dis R, Shenzhen 518055, Guangdong, Peoples R China 5.Shanghai Rural Commercial Bank Co Ltd, Shanghai 200002, Peoples R China 6.City Univ Hong Kong, Dept Phys, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China 7.Chinese Univ Hong Kong, Sch Life & Hlth Sci, Shenzhen 518172, Peoples R China 8.Chinese Univ Hong Kong, Warshel Inst Computat Biol, Shenzhen 518172, Peoples R China 9.Yonsei Univ, Coll Life Sci & Biotechnol, Biotechnol, Seoul 03722, South Korea |
第一作者单位 | 生物系; 生命科学学院 |
通讯作者单位 | 生物系; 生命科学学院 |
推荐引用方式 GB/T 7714 |
Mao, Jiashun,Akhtar, Javed,Zhang, Xiao,et al. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models[J]. ISCIENCE,2021,24(9).
|
APA |
Mao, Jiashun.,Akhtar, Javed.,Zhang, Xiao.,Sun, Liang.,Guan, Shenghui.,...&Wang, Guanyu.(2021).Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models.ISCIENCE,24(9).
|
MLA |
Mao, Jiashun,et al."Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models".ISCIENCE 24.9(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论