题名 | Evolutionary Large-Scale Multi-Objective Optimization: A Survey |
作者 | |
通讯作者 | Zhang,Xingyi |
发表日期 | 2022-11-01
|
DOI | |
发表期刊 | |
ISSN | 0360-0300
|
EISSN | 1557-7341
|
卷号 | 54期号:8 |
摘要 | Multi-objective evolutionary algorithms (MOEAs) have shown promising performance in solving various optimization problems, but their performance may deteriorate drastically when tackling problems containing a large number of decision variables. In recent years, much effort been devoted to addressing the challenges brought by large-scale multi-objective optimization problems. This article presents a comprehensive survey of stat-of-the-art MOEAs for solving large-scale multi-objective optimization problems. We start with a categorization of these MOEAs into decision variable grouping based, decision space reduction based, and novel search strategy based MOEAs, discussing their strengths and weaknesses. Then, we review the benchmark problems for performance assessment and a few important and emerging applications of MOEAs for large-scale multi-objective optimization. Last, we discuss some remaining challenges and future research directions of evolutionary large-scale multi-objective optimization. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | ESI高被引
|
学校署名 | 其他
|
资助项目 | National Key R&D Program of China[2018AAA0100100]
; National Natural Science Foundation of China[61822301,61876123,61906001,61906081,61903178,
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Theory & Methods
|
WOS记录号 | WOS:000705073600018
|
出版者 | |
EI入藏号 | 20214111004010
|
EI主题词 | Benchmarking
; Calculations
; Decision Making
; Evolutionary Algorithms
; Surveys
|
EI分类号 | Management:912.2
; Mathematics:921
; Optimization Techniques:921.5
|
ESI学科分类 | COMPUTER SCIENCE
|
Scopus记录号 | 2-s2.0-85116647007
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:179
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/253961 |
专题 | 南方科技大学 |
作者单位 | 1.Anhui University,Hefei,China 2.Southern University of Science and Technology,Shenzhen,China 3.The Hong Kong Polytechnic University,Hong Kong,Hong Kong 4.University of Surrey,Guildford,United Kingdom |
推荐引用方式 GB/T 7714 |
Tian,Ye,Si,Langchun,Zhang,Xingyi,et al. Evolutionary Large-Scale Multi-Objective Optimization: A Survey[J]. ACM COMPUTING SURVEYS,2022,54(8).
|
APA |
Tian,Ye.,Si,Langchun.,Zhang,Xingyi.,Cheng,Ran.,He,Cheng.,...&Jin,Yaochu.(2022).Evolutionary Large-Scale Multi-Objective Optimization: A Survey.ACM COMPUTING SURVEYS,54(8).
|
MLA |
Tian,Ye,et al."Evolutionary Large-Scale Multi-Objective Optimization: A Survey".ACM COMPUTING SURVEYS 54.8(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Evolutionary Large-S(883KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论