中文版 | English
题名

K-nddp: An efficient anonymization model for social network data release

作者
通讯作者Asheralieva,Alia
发表日期
2021-10-01
DOI
发表期刊
EISSN
2079-9292
卷号10期号:19
摘要

With the evolution of Internet technology, social networking sites have gained a lot of popularity. People make new friends, share their interests, experiences in life, etc. With these activities on social sites, people generate a vast amount of data that is analyzed by third parties for various purposes. As such, publishing social data without protecting an individual’s private or confidential information can be dangerous. To provide privacy protection, this paper proposes a new degree anonymization approach k-NDDP, which extends the concept of k-anonymity and differential privacy based on Node DP for vertex degrees. In particular, this paper considers identity disclosures on social data. If the adversary efficiently obtains background knowledge about the victim’s degree and neighbor connections, it can re-identify its victim from the social data even if the user’s identity is removed. The contribution of this paper is twofold. First, a simple and, at the same time, effective method k–NDDP is proposed. The method is the extension of k-NMF, i.e., the state-of-the-art method to protect against mutual friend attack, to defend against identity disclosures by adding noise to the social data. Second, the achieved privacy using the concept of differential privacy is evaluated. An extensive empirical study shows that for different values of k, the divergence produced by k-NDDP for CC, BW and APL is not more than 0.8%, also added dummy links are 60% less, as compared to k-NMF approach, thereby it validates that the proposed k-NDDP approach provides strong privacy while maintaining the usefulness of data.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China (NSFC)[61950410603]
WOS研究方向
Computer Science ; Engineering ; Physics
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号
WOS:000725624500001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253986
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Sciences,Comsats University,Islamabad,44000,Pakistan
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Shakeel,Shafaq,Anjum,Adeel,Asheralieva,Alia,et al. K-nddp: An efficient anonymization model for social network data release[J]. Electronics (Switzerland),2021,10(19).
APA
Shakeel,Shafaq,Anjum,Adeel,Asheralieva,Alia,&Alam,Masoom.(2021).K-nddp: An efficient anonymization model for social network data release.Electronics (Switzerland),10(19).
MLA
Shakeel,Shafaq,et al."K-nddp: An efficient anonymization model for social network data release".Electronics (Switzerland) 10.19(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shakeel,Shafaq]的文章
[Anjum,Adeel]的文章
[Asheralieva,Alia]的文章
百度学术
百度学术中相似的文章
[Shakeel,Shafaq]的文章
[Anjum,Adeel]的文章
[Asheralieva,Alia]的文章
必应学术
必应学术中相似的文章
[Shakeel,Shafaq]的文章
[Anjum,Adeel]的文章
[Asheralieva,Alia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。