中文版 | English
题名

Robust discovery of partial differential equations in complex situations

作者
发表日期
2021-09-01
DOI
发表期刊
ISSN
2643-1564
卷号3期号:3
摘要
Data-driven discovery of partial differential equations (PDEs) has achieved considerable development in recent years. Several aspects of problems have been resolved by sparse regression-based and neural-network-based methods. However, the performance of existing methods lacks stability when dealing with complex situations, including sparse data with high noise, high-order derivatives, and shock waves, which bring obstacles to calculating derivatives accurately. Therefore, a robust PDE discovery framework, called the robust deep-learning genetic algorithm (R-DLGA), that incorporates the physics-informed neural network (PINN) is proposed in this paper. In the framework, preliminary results of potential terms provided by the DLGA are added into the loss function of the PINN as physical constraints to improve the accuracy of derivative calculation. It assists in optimizing the preliminary result and obtaining the ultimately discovered PDE by eliminating the error compensation terms. The stability and accuracy of the proposed R-DLGA in several complex situations are examined for proof and concept, and the results prove that the proposed framework can calculate derivatives accurately with the optimization of the PINN and possesses surprising robustness for complex situations, including sparse data with high noise, high-order derivatives, and shock waves.
相关链接[Scopus记录]
收录类别
ESCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000705661900001
EI入藏号
20214010987084
EI主题词
Complex networks ; Error compensation ; Genetic algorithms ; Partial differential equations ; Shock waves
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Systems and Equipment:722 ; Calculus:921.2 ; Classical Physics; Quantum Theory; Relativity:931
Scopus记录号
2-s2.0-85116391347
来源库
Scopus
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/253999
专题工学院_环境科学与工程学院
作者单位
1.Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT),Energy and Resources Engineering (ERE),State Key Laboratory for Turbulence and Complex Systems (SKLTCS),College of Engineering,Peking University,Beijing,100871,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518000,China
推荐引用方式
GB/T 7714
Xu,Hao,Zhang,Dongxiao. Robust discovery of partial differential equations in complex situations[J]. Physical Review Research,2021,3(3).
APA
Xu,Hao,&Zhang,Dongxiao.(2021).Robust discovery of partial differential equations in complex situations.Physical Review Research,3(3).
MLA
Xu,Hao,et al."Robust discovery of partial differential equations in complex situations".Physical Review Research 3.3(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Hao]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Xu,Hao]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Xu,Hao]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。