题名 | Ensemble Online Sequential Extreme Learning Machine for Air Quality Prediction |
作者 | |
通讯作者 | Cao,Weipeng |
DOI | |
发表日期 | 2021-07-30
|
ISBN | 978-1-6654-4406-4
|
会议录名称 | |
页码 | 233-237
|
会议日期 | 30 July-1 Aug. 2021
|
会议地点 | Qingdao, China
|
摘要 | Online Sequential Extreme Learning Machine (OS-ELM) has been confirmed by numerous studies to be an effective algorithm for online learning scenarios. However, we found that some parameters of OS-ELM are randomly assigned and remain unchanged in the subsequent learning process, which leads to great instability in the model performance in practice. To alleviate this problem, we propose a novel ensemble OS-ELM algorithm (EOS-ELM-R) for solving air quality prediction problems. EOS-ELM-R uses multiple distribution functions to initialize the random parameters of the base OS-ELM models and its final output is the average of the predictions of these base models. Extensive experimental results on two real-world air quality prediction problems show that EOS-ELM-R is effective, and it can achieve better generalization capabilities than similar algorithms. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20214110999862
|
EI主题词 | Air quality
; E-learning
; Forecasting
; Knowledge acquisition
; Machine learning
|
EI分类号 | Air Pollution Control:451.2
; Artificial Intelligence:723.4
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85116539116
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9545089 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254007 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Shenzhen University,College of Computer Science and Software Engineering,Shenzhen,China 2.Shenzhen University,College of International Exchange,Shenzhen,China 3.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Liu,Ye,Cao,Weipeng,Liu,Yiwen,et al. Ensemble Online Sequential Extreme Learning Machine for Air Quality Prediction[C],2021:233-237.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论