中文版 | English
题名

Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs

作者
通讯作者Yan,Xiao
DOI
发表日期
2021-07-18
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
卷号
2021-July
页码
1-8
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks. However, existing research on GNNs focuses on designing more effective models without considering much about the quality of the input data. In this paper, we propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models for better performance on semi-supervised node classification. As graph data consist of both topology and node labels, we improve input data quality from both perspectives. For topology, we observe that higher classification accuracy can be achieved when the ratio of inter-class edges (connecting nodes from different classes) is low and propose topology update to remove inter-class edges and add intra-class edges. For node labels, we propose training node augmentation, which enlarges the training set using the labels predicted by existing GNN models. SEG is a general framework that can be easily combined with existing GNN models. Experimental results validate that SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
RGC of HKSAR[GRF 14208318] ; [61672552]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581703081
EI入藏号
20214110995708
EI主题词
Graph structures ; Graph theory ; Graphic methods ; Input output programs
EI分类号
Computer Programming:723.1 ; Database Systems:723.3 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85116505752
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533748
引用统计
被引频次[WOS]:48
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254010
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Chinese University of Hong Kong,
2.Southern University of Science and Technology,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yang,Han,Yan,Xiao,Dai,Xinyan,et al. Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Self-Enhanced GNN.pd(1827KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Han]的文章
[Yan,Xiao]的文章
[Dai,Xinyan]的文章
百度学术
百度学术中相似的文章
[Yang,Han]的文章
[Yan,Xiao]的文章
[Dai,Xinyan]的文章
必应学术
必应学术中相似的文章
[Yang,Han]的文章
[Yan,Xiao]的文章
[Dai,Xinyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。