题名 | Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs |
作者 | |
通讯作者 | Yan,Xiao |
DOI | |
发表日期 | 2021-07-18
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-4597-9
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-8
|
会议日期 | JUL 18-22, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks. However, existing research on GNNs focuses on designing more effective models without considering much about the quality of the input data. In this paper, we propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models for better performance on semi-supervised node classification. As graph data consist of both topology and node labels, we improve input data quality from both perspectives. For topology, we observe that higher classification accuracy can be achieved when the ratio of inter-class edges (connecting nodes from different classes) is low and propose topology update to remove inter-class edges and add intra-class edges. For node labels, we propose training node augmentation, which enlarges the training set using the labels predicted by existing GNN models. SEG is a general framework that can be easily combined with existing GNN models. Experimental results validate that SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | RGC of HKSAR[GRF 14208318]
; [61672552]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000722581703081
|
EI入藏号 | 20214110995708
|
EI主题词 | Graph structures
; Graph theory
; Graphic methods
; Input output programs
|
EI分类号 | Computer Programming:723.1
; Database Systems:723.3
; Artificial Intelligence:723.4
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
Scopus记录号 | 2-s2.0-85116505752
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533748 |
引用统计 |
被引频次[WOS]:48
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254010 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Chinese University of Hong Kong, 2.Southern University of Science and Technology,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yang,Han,Yan,Xiao,Dai,Xinyan,et al. Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Self-Enhanced GNN.pd(1827KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论