题名 | SEEN: Few-Shot Classification with SElf-ENsemble |
作者 | |
通讯作者 | Zhang,Yu |
DOI | |
发表日期 | 2021-07-18
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-4597-9
|
会议录名称 | |
卷号 | 2021-July
|
页码 | 1-8
|
会议日期 | JUL 18-22, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Few-shot classification aims at learning new concepts with only a few labeled examples. In this paper, we focus on metric-based methods that have achieved state-of-the-art performance. However, they classify query examples based on embeddings extracted from only the last layer. These embeddings tend to be class-specific and may not generalize well to novel classes or domains. To alleviate this problem, we propose the SElf-ENsemble (SEEN) that leverages embeddings from multiple layers. Specifically, a base classifier is built for each of the last few layers, and the resultant base classifiers are then combined together. Experiments on various benchmark datasets demonstrate that the proposed SEEN method outperforms existing methods in both standard few-shot classification and cross-domain few-shot classification scenarios. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | NSFC[62076118]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000722581704051
|
EI入藏号 | 20214110996154
|
EI主题词 | Classification (of information)
; Computer vision
|
EI分类号 | Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Computer Applications:723.5
; Vision:741.2
; Information Sources and Analysis:903.1
|
Scopus记录号 | 2-s2.0-85116490539
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533845 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/254011 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Computer Science and Engineering,China 2.Hong Kong University of Science and Technology,Department of Computer Science and Engineering,Hong Kong |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Jiang,Weisen,Zhang,Yu,Kwok,James T.. SEEN: Few-Shot Classification with SElf-ENsemble[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论