中文版 | English
题名

Interpreting Node Embedding with Text-labeled Graphs

作者
DOI
发表日期
2021-07-18
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-4597-9
会议录名称
卷号
2021-July
页码
1-8
会议日期
JUL 18-22, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Graph neural networks have recently received increasing attention. These methods often map nodes into latent spaces and learn vector representations of the nodes for a variety of downstream tasks. To gain trust and to promote collaboration between AIs and humans, it would be better if those representations were interpretable for humans. However, most explainable AIs focus on a supervised learning setting and aim to answer the following question: 'Why does the model predict y for an input x?'. For an unsupervised learning setting as node embedding, interpretation can be more complicated since the embedding vectors are usually not understandable for humans. On the other hand, nodes and edges in a graph are often associated with texts in many real-world applications. A question naturally arises: could we integrate the human-understandable textural data into graph learning to facilitate interpretable node embedding? In this paper we present interpretable graph neural networks (iGNN), a model to learn textual explanations for node representations modeling the extra information contained in the associated textual data. To validate the performance of the proposed method, we investigate the learned interpretability of the embedding vectors and use functional interpretability to measure it. Experimental results on multiple text-labeled graphs show the effectiveness of the iGNN model on learning textual explanations of node embedding while performing well in downstream tasks.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
European Union[766186]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000722581703025
EI入藏号
20214110995552
EI主题词
Data mining ; Graph neural networks ; Graph theory ; Vector spaces
EI分类号
Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85116481492
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9533692
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/254012
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Nec Laboratories Europe,Heidelberg,69115,Germany
2.Cercia,School of Computer Science,University of Birmingham,United Kingdom
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Serra,Giuseppe,Xu,Zhao,Niepert,Mathias,et al. Interpreting Node Embedding with Text-labeled Graphs[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Serra,Giuseppe]的文章
[Xu,Zhao]的文章
[Niepert,Mathias]的文章
百度学术
百度学术中相似的文章
[Serra,Giuseppe]的文章
[Xu,Zhao]的文章
[Niepert,Mathias]的文章
必应学术
必应学术中相似的文章
[Serra,Giuseppe]的文章
[Xu,Zhao]的文章
[Niepert,Mathias]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。